Global Stability for a Non-linear Incidence Rate SEIQR Model in Epidemiology

( views:213, downloads:0 )
Author:
LU Xue-juan()
ZHANG Jing()
DONG Xiao-hong()
Journal Title:
Journal of Biomathematics
Issue:
Volume 27, Issue 01, 2012
DOI:
Key Word:

Abstract:

  • [1]Li M Y,Muldowney J S.Global stability for the SEIR model in epidemiology[J].Mathematical Biosciences,1995,125(2):155-164.
  • [2]Ruan Shigui,Wang Wendi.Dynamical behavior of an epidemic model with a nonlinear incidence rate[J].Journal of Differential Equations,2003,188(1):135-163.
  • [3]辛京奇,王文娟,张凤琴等.带有非线性传染率的传染病模型[J].高校应用数学学报,2007,22(4):391-396.
  • [4]徐芳,栗永安,杜明银.具有常数输入的SEIS模型的全局渐近稳定性[J].高校应用数学学报,2009,24(1):53-57.
  • [5]徐文雄,张太雷,徐宗本.非线性高维自治微分系统SEIQR流行病模型全局稳定性[J].工程数学学报, 2007,24(1):79-86.
  • [6]Li M Y,Graef J R,Wang Liancheng,et al.Global dynamics of an SEIR epidemic model with a varying total population size[J].Mathematical Biosciences,1999,160(2):191-213.
  • [7]Liu Weimin,Levin S A,Lwasa Yoh. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J].Journal of Mathematical Biology,1986,23(2):187-204.
  • [8]马知恩,周义仓.传染病动力学的数学建模与研究.北京:科学出版社,2004.
  • [9]Hethcote H,Ma Zhien,Liao Shengbing.Effects of quarantine in six endemic models for infectious diseases[J].Mathematical Biosciences,2002,180(sl):141-160.
  • [10]杨建雅,张凤琴.一类具有垂直传染的SIR传染病模型[J].生物数学学报,2006,21(3):341-344.
  • [11]苟清明,王稳地.一类具有饱和发生率的SEIS模型的全局稳定性[J].生物数学学报,2008,23(2):265-272.
  • [12]马剑,张春蕊.一类具有时滞的传染病模型的稳定性分析[J].生物数学学报,2007,22(3):455-464.
WanfangData CO.,Ltd All Rights Reserved
About WanfangData | Contact US
Healthcare Department, Fuxing Road NO.15, Haidian District Beijing, 100038 P.R.China
Tel:+86-010-58882616 Fax:+86-010-58882615 Email:yiyao@wanfangdata.com.cn