Dynamical Analysis of A Delayed Pest Management SEI System with Birth Pulse and Impulsive Harvesting at Different Moments

( views:222, downloads:0 )
Author:
YAN Mei()
LONG Dan()
XIANG Zhong-yi()
Journal Title:
Journal of Biomathematics
Issue:
Volume 27, Issue 01, 2012
DOI:
Key Word:

Abstract:

  • [1]Gao S J,Chen L S,et al. Analysis of a delayed epidemic model with pulse vaccination and saturation incidence[J].Vaccine,2006,24(35-36):6037-6045.
  • [2]Sun S,Chen L.Permanence and Complexity of the Eco-Epidemiological Model with Impulsive Perturbation[J].Int J Biomath,2008,1(2):121-132.
  • [3]贾建文,乔梅红.一类具有脉冲效应和Ⅲ类功能性反应的捕食系统分析[J].生物数学学报,2008,23(2):279-288.
  • [4]Xiang Z Y,Song X Y.Dynamic analysis of a pest management SEI model with saturation incidence concerning impulsive control strategy[J].Nonlinear Anal.,2009,10(4):2335-2345.
  • [5]Clack C.Mathematical Bioeconomics:The Optimal Management of Renewable Resources[M].New York:Wiley,1976.
  • [6]Wang W.Global behavior of an SEIRS epidemic model with time delays[J].Appl Math Lett,2002,15(4):423-428.
  • [7]Gan Q,Xu R,Yang P.Bifurcation analysis for a predator-prey system with prey dispersal and time delay[J].Int J Biomath,2008,1(2):209-224.
  • [8]陈福来,文贤章.具有脉冲和时滞的Lotka-Volterra系统的正周期解的存在性和全局渐近稳定性[J].生物数学学报,2004,19(3):280-288.
  • [9]Lakshmikantham V,Bainov D,Simeonov P.Theory of Impulsive Differential Equations[M].World Scientific,1989.
  • [10]Xiao Y N,Chen L S.Modelling and analysis of a predator-prey model with disease in the prey[J].Math Biosci,2001,171(1):59-82.
WanfangData CO.,Ltd All Rights Reserved
About WanfangData | Contact US
Healthcare Department, Fuxing Road NO.15, Haidian District Beijing, 100038 P.R.China
Tel:+86-010-58882616 Fax:+86-010-58882615 Email:yiyao@wanfangdata.com.cn