Hopy Bifurcation Stability in a Predator-Prey Model with Time Delays

( views:363, downloads:0 )
Author:
CHEN Hong-bing()
HE Wan-sheng()
Journal Title:
Journal of Biomathematics
Issue:
Volume 27, Issue 01, 2012
DOI:
Key Word:

Abstract:

  • [1]Hassard B,Kazarinoff D,Wan Y.Theory and Applications of Hopf Bifurcation[M].Cambridge:Cambridge University Press,1981.
  • [2]Ruan S,Wei J.On the zeros of transcendental functions with applications to stability of delay differential equations with two delays[J].Dynamic Analysis of Spatial Structures Session Organizer,2003,10(6):863-874.
  • [3]Song Y,Peng Y.Stability and bifurcation analysis on a Logistic model with discrete and distributed delays[J].Applied Mathematics and Computation,2006,181(2):1745-1757.
  • [4]May R M.Time delay versus stability in population models with two and three trophic levels[J].Ecology,1973,4(2):315-325.
  • [5]Yan X-P,Zhang C-H.Hopf bifurcation in a delayed Lokta-Volterra predator + prey system[J].Nonlinear Analysis:Real World Applications,2008,9(1):114-127.
  • [6]Ma Z,Huo H.Stability and Hopf bifurcation analysis on a predator-prey model with discrete and distributed delays[J].Nonlinear Analysis:Real World Applications,2009,10(2):1160-1172.
  • [7]Chen Y,Song C.Stability and Hopf bifurcation analysis in a prey-predator system with stage-structure for prey and time delay[J].Chaos Solitons Fractals,2008,8(1):1104-1114.
  • [8]Meng X,Wei J.Stability and bifurcation of mutual system with time delay[J].Chaos,Solitons and Fractals,2004,21(3):729-40.
  • [9]Qin Y,Wang L,Liu Y,et al.Stability of the dynamics systems[M].Beijing:Science Press,1989.
  • [10]Hale J,Verduyn Lunel SM.Introduction to Functional Di?Erential Equations[M].New York:SpringerVerlag,1993.
  • [11]Faria T.Stability and bifurcation for a delayed predator-prey model and the effect of diffusion[J].Siam Journal on Applied Mathematics,2001,254(2):433-463.
  • [12]Song Y L,Wei J J.Local Hopf bifurcation and global periodic solutions in a delayed predator-preysystem[J].Siam Journal on Applied Mathematics,2005,301(1):1-21.
  • [13]Stech A.Hopf bifurcation calculations for functional differential equations[J].Journal of Mathematical Analysis And Applications,1985,109(2):472-491.
  • [14]Hale J,Lunel S M.Introduction to Functional Differential Equations[M].New York:springer,1993.
  • [15]Yan X P,Li W T.Hopf bifurcation and global periodic solutions in a delayed predator + prey system[J].Applied Mathematics and Computation,2006,177(1):427-445.
  • [16]Cushing M.Integro-differential Equations and Delay Models in Population Dynamics[M].Heidelberg:Springer,1977.
  • [17]Kuang Y.Delay Differential Equations with Applications in Population Dynamics[M].New York:Academic Press,1993.
  • [18]马知恩.种群生态学的数学建模与研究[M].安徽:安徽教育出版社,1996.2009,52(1):141-152.
  • [19]杨高翔.赵临龙.时滞Nicholson's Blowflies方程中行波解的Hopf分支[J].生物数学学报,2011,26(1):81-86.
  • [20]王俊峰,薛亚奎.一类具有垂直传染和预防接种的传染病模型的稳定性[J].生物数学学报,2011,26(1):169-174.
WanfangData CO.,Ltd All Rights Reserved
About WanfangData | Contact US
Healthcare Department, Fuxing Road NO.15, Haidian District Beijing, 100038 P.R.China
Tel:+86-010-58882616 Fax:+86-010-58882615 Email:yiyao@wanfangdata.com.cn