KATP channel action in vascular tone regulation: from genetics to diseases

( views:78, downloads:0 )
Author:
SHI Wei-Wei(Cardiothoracic Research Laboratory, Carlyle Fraser Heart Center, Emory University, Atlanta, GA 30308, USA)
YANG Yang(2Department of Neurology, Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Neuroscience and Regeneration Research Center, Veterans Affairs Connectieut Healthcare System, West Haven, CT 06516, USA)
SHI Yun(Department of Cellular and Molecular Pharmacology, University of California, SanFrancisco, CA 94158, USA)
JIANG Chun(Department of Biology,Georgia State University, Atlanta, GA 30303, USA)
Journal Title:
Acta Physiologica Sinica
Issue:
Volume 64, Issue 01, 2012
DOI:
Key Word:
ATP-sensitive potassium channel;Kir6.1;SUR2B;protein phosphorylation;S-glutathionylation;nuclear factor-κB;sepsis;sudden infant death syndrome;J-wave syndrome

Abstract: ATP-sensitive potassium (KATP) channels are widely distributed in vasculatures,and play an important role in the vascular tone regulation.The KATP channels consist of 4 pore-forming inward rectifier K+ channel (Kir) subunits and 4 regulatory sulfonylurea receptors (SUR).The major vascular isoform of KATP channels is composed of Kir6.1/SUR2B,although low levels of other subunits are also present in vascular beds.The observation from transgenic mice and humans carrying Kir6.1/SUR2B channel mutations strongly supports that normal activity of the Kir6.1/SUR2B channel is critical for cardiovascular function.The Kir6.1/SUR2B channel is regulated by intracellular ATP and ADP.The channel is a common target of several vasodilators and vasoconstrictors.Endogenous vasopressors such as arginine vasopressin and a-adrenoceptor agonists stimulate protein kinase C (PKC) and inhibit the KATP channels,while vasodilators such as β-adrenoceptor agonists and vasoactive intestinal polypeptide increase KATP channel activity by activating the adenylate cyclase-cAMP-protein kinase A (PKA) pathway.PKC phosphorylates a cluster of 4 serine residues at C-terminus of Kir6.1,whereas PKA acts on Serl 387 in the nucleotide binding domain 2 of SUR2B.The Kir6.1/SUR2B channel is also inhibited by oxidants including reactive oxygen species allowing vascular regulation in oxidative stress.The molecular basis underlying such a channel inhibition is likely to be mediated by S-glutathionylation at a few cysteine residues,especially Cys176,in Kir6.1.Furthermore,the channel activity is augmented in endotoxemia or septic shock,as a result of the upregulation of Kir6.1/SUR2B expression.Activation of the nuclear factor-κB dependent transcriptional mechanism contributes to the Kir6.1/SUR2B channel upregulation by lipopolysaccharides and perhaps other toll-like receptor ligands as well.In this review,we summarize the vascular KATP channel regulation under physiological and pathophysiological conditions,and discuss the importance of KATP channel as a potentially useful target in the treatment and prevention of cardiovascular diseases.

  • 1.Noma A.ATP-regulated K+ channels in cardiac muscle.Nature 1983; 305(5930):147-148.
  • 2.Spruce AE,Standen NB,Stanfield PR.Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane.Nature 1985; 316(6030):736-738.
  • 3.Trube G,Rorsman P,Ohno-Shosaku T.Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells.Pflugers Arch 1986; 407(5):493-499.
  • 4.Standen NB,Quayle JM,Davies NW,Brayden JE,Huang Y,Nelson MT.Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle.Science 1989;245(4914):177-180.
  • 5.Beech D J,Zhang H,Nakao K,Bolton TB.K channel activation by nucleotide diphosphates and its inhibition by glibenclamide in vascular smooth muscle cells.Br J Pharmacol 1993; 110(2):573-582.
  • 6.Nelson MT,Huang Y,Brayden JE,Hescheler J,Standen NB.Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels.Nature 1990;344(6268):770-773.
  • 7.Winquist R J,Heaney LA,Wallace AA,Baskin EP,Stein RB,Garcia ML,Kaczorowski GJ.Glyburide blocks the relaxation response to BRL 34915 (cromakalim),minoxidil sulfate and diazoxide in vascular smooth muscle.J Pharmacol Exp Ther 1989; 248(1):149-156.
  • 8.Haissaguerre M,Chatel S,Sacher F,Weerasooriya R,Probst V,Loussouarn G,Horlitz M,Liersch R,Schulze-Bahr E,Wilde A,Kaab S,Koster J,Rudy Y,Le Marec H,Schott JJ.Ventricular fibrillation with prominent early repolarization associated with a rare variant of KCNJ8/KATP channel.J Cardiovasc Electrophysiol 2009; 20(1):93-98.
  • 9.Medeiros-Domingo A,Tan BH,Crotti L,Tester DJ,Eckhardt L,Cuoretti A,Kroboth SL,Song C,Zhou Q,Kopp D,Schwartz P J,Makielski JC,Ackerman MJ.Gain-of-function mutation S422L in the KCNJ8-encoded cardiac KATP channel Kir6.1 as a pathogenic substrate for J-wave syndromes.Heart Rhythm 2010; 7(10):1466-1471.
  • 10.Tester DJ,Tan BH,Medeiros-Domingo A,Song C,Makielski JC,Ackerman MJ.Loss-of-function mutations in the KCNJ8-encoded Kir6.1 KATP channel and sudden infant death syndrome.Circ Cardiovasc Genet 2011; 4(5):510-515.
  • 11.Campbell JD,Sansom MS,Ashcroft FM.Potassium channel regulation.EMBO Rep 2003; 4(11):1038-1042.
  • 12.Yamada M,Isomoto S,Matsumoto S,Kondo C,Shindo T,Horio Y,Kurachi Y.Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+ channel.J Physiol 1997; 499 (Pt 3):715-720.
  • 13.Isomoto S,Kondo C,Yamada M,Matsumoto S,Higashiguchi O,Horio Y,Matsuzawa Y,Kurachi Y.A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel.J Biol Chem 1996; 271(40):24321-24324.
  • 14.Ammala C,Moorhouse A,Gribble F,Ashfield R,Proks P,Smith PA,Sakura H,Coles B,Ashcroft SJ,Ashcroft FM.Promiscuous coupling between the sulphonylurea receptor and inwardly rectifying potassium channels.Nature 1996;379(6565):545-548.
  • 15.Chutkow WA,Simon MC,Le Beau MM,Burant CF.Cloning,tissue expression,and chromosomal localization of SUR2,the putative drug-binding subunit of cardiac,skeletal muscle,and vascular KATP channels.Diabetes 1996; 45(10):1439-1445.
  • 16.Shi Y,Chen X,Wu Z,Shi W,Yang Y,Cui N,Jiang C,Harrison RW.cAMP-dependent protein kinase phosphorylation produces interdomain movement in SUR2B leading to activation of the vascular KATP channel.J Biol Chem 2008;283(12):7523-7530.
  • 17.Chutkow WA,Pu J,Wheeler MT,Wada T,Makielski JC,Burant CF,McNally EM.Episodic coronary artery vasospasm and hypertension develop in the absence of Sur2 KATP channels.J Clin Invest 2002; 110(2):203-208.
  • 18.Miki T,Suzuki M,Shibasaki T,Uemura H,Sato T,Yamaguchi K,Koseki H,Iwanaga T,Nakaya H,Seino S.Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6.1.Nat Med 2002; 8(5):466-472.
  • 19.Croker B,Crozat K,Berger M,Xia Y,Sovath S,Schaffer L,Eleftherianos I,Imler JL,Beutler B.ATP-sensitive potassium channels mediate survival during infection in mammals and insects.Nat Genet 2007; 39(12):1453-1460.
  • 20.Kane GC,Lam CF,O'Cochlain F,Hodgson DM,Reyes S,Liu XK,Miki T,Seino S,Katusic ZS,Terzic A.Gene knockout of the KCNJ8-encoded Kir6.1 KATP channel imparts fatal susceptibility to endotoxemia.FASEB J 2006; 20(13):2271-2280.
  • 21.Kakkar R,Ye B,Stpller DA,Smelley M,Shi NQ,Galles K,Hadhazy M,Makielski JC,McNally EM.Spontaneous coronary vasospasm in KATP mutant mice arises from a smooth muscle-extrinsic process.Circ Res 2006; 98(5):682-689.
  • 22.Malester B,Tong X,Ghiu I,Kontogeorgis A,Gutstein DE,Xu J,Hendricks-Munoz KD,Coetzee WA.Transgefic expression of a dominant negative KATP channel subunit in the mouse endothelium:effects on coronary flow and endothelin-1 secretion.FASEB J 2007; 21(9):2162-2172.
  • 23.Eleftherianos I,Won S,Chtarbanova S,Squiban B,Ocorr K,Bodmer R,Beutler B,Hoffmann JA,Imler JL.ATP-sensitive potassium channel (KATP)-dependent regulation of cardiotropic viral infections.Proc Natl Acad Sci U S A 2011;108(29):12024-12029.
  • 24.Quayle JM,Nelson MT,Standen NB.ATP-sensitive and inwardly rectifying potassium channels in smooth muscle.Physiol Rev 1997; 77(4):1165-1232.
  • 25.Randak CO,Welsh MJ.ADP inhibits function of the ABC transporter cystic fibrosis transmembrane conductance regulator via its adenylate kinase activity.Proc Natl Acad Sci U S A 2005; 102(6):2216-2220.
  • 26.Cole WC,Malcolm T,Walsh MP,Light PE.Inhibition by protein kinase C of the KNDP subtype of vascular smooth muscle ATP-sensitive potassium channel.Circ Res 2000;87(2):112-117.
  • 27.Kontos HA,Raper A J,Patterson JL.Analysis ofvasoactivity of local pH,PCO2 and bicarbonate on pial vessels.Stroke 1977; 8(3):358-360.
  • 28.Tian R,Vogel P,Lassen NA,Mulvany M J,Andreasen F,Aalkjaer C.Role of extracellular and intracellular acidosis for hypercapnia-induced inhibition of tension of isolated rat cerebral arteries.Circ Res 1995; 76(2):269-275.
  • 29.Wang X,Wu J,Li L,Chen F,Wang R,Jiang C.Hypercapnic acidosis activates KATP channels in vascular smooth muscles.Circ Res 2003; 92(11):1225-1232.
  • 30.Matsuo M,Tanabe K,Kioka N,Amachi T,Ueda K.Different binding properties and affinities for ATP and ADP among sulfonylurea receptor subtypes,SUR1,SUR2A,and SUR2B.J Biol Chem 2000; 275(37):28757-28763.
  • 31.Dabrowski M,Tarasov A,Ashcroft FM.Mapping the architecture of the ATP-binding site of the KATP channel subunit Kir6.2.J Physiol 2004; 557(Pt 2):347-354.
  • 32.Xu H,Cui N,Yang Z,Wu J,Giwa LR,Abdulkadir L,Sharma P,Jiang C.Direct activation of cloned KATP channels by intracellular acidosis.J Biol Chem 2001; 276(16):12898-12902.
  • 33.Murphy ME,Brayden JE.Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels.J Physiol 1995; 486 (Pt 1):47-58.
  • 34.Thomas GD,Victor RG.Nitric oxide mediates contractioninduced attenuation of sympathetic vasoconstriction in rat skeletal muscle.J Physiol 1998; 506 (Pt3):817-826.
  • 35.Hein TW,Xu W,Kuo L.Dilation of retinal arterioles in response to lactate:role of nitric oxide,guanylyl cyclase,and ATP-sensitive potassium channels.Invest Ophthalmol Vis Sci 2006; 47(2):693-699.
  • 36.Quayle JM,Bonev AD,Brayden JE,Nelson MT.Calcitonin gene-related peptide activated ATP-sensitive K+ currents in rabbit arterial smooth muscle via protein kinase A.J Physiol 1994; 475(1):9-13.
  • 37.Wellman GC,Quayle JM,Standen NB.ATP-sensitive K+ channel activation by calcitonin gene-related peptide and protein kinase A in pig coronary arterial smooth muscle.J Physiol 1998; 507(Ptl):117-129.
  • 38.Rosolowsky M,Campbell WB.Synthesis of hydroxyeicosatetraenoic (HETEs) and epoxyeicosatrienoic acids (EETs) by cultured bovine coronary artery endothelial cells.Biochim Biophys Acta 1996; 1299(2):267-277.
  • 39.Archer SL,Gragasin FS,Wu X,Wang S,McMurtry S,Kim DH,Platonov M,Koshal A,Hashimoto K,Campbell WB,Falck JR,Michelakis ED.Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BKCa channels.Circulation 2003; 107(5):769-776.
  • 40.Campbell WB,Falck JR.Arachidonic acid metabolites as endothelium-derived hyperpolarizing factors.Hypertension 2007; 49(3):590-596.
  • 41.Ye D,Zhou W,Lu T,Jagadeesh SG,Falck JR,Lee HC.Mechanism of rat mesenteric arterial KATP channel activation by 14,15-epoxyeicosatrienoic acid.Am J Physiol Heart Circ Physiol 2006; 290(4):H1326-1336.
  • 42.Ye D,Zhou W,Lee HC.Activation of rat mesenteric arterial KATP channels by 11,12-epoxyeicosatrienoic acid.Am J Physiol Heart Circ Physiol 2005; 288(1):H358-H364.
  • 43.Cheng Y,Ndisang JF,Tang G,Cao K,Wang R.Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats.Am J Physiol Heart Circ Physiol 2004; 287(5):H2316-H2323.
  • 44.Zhao W,Wang R.H2S-induced vasorelaxation and underlying cellular and molecular mechanisms.Am J Physiol Heart Circ Physio12002; 283(2):H474-H480.
  • 45.Zhao W,Zhang J,Lu Y,Wang R.The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener.EMBO J 2001; 20(21):6008-6016.
  • 46.Liang GH,Adebiyi A,Leo MD,McNally EM,Leffier CW,Jaggar JH.Hydrogen sulfide dilates cerebral arterioles by activating smooth muscle cell plasma membrane KATP channels.Am J Physiol Heart Circ Physiol 2011; 300(6):H2088-H2095.
  • 47.Tang G,Wu L,Liang W,Wang R.Direct stimulation of KATP channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells.Mol Pharmacol 2005; 68(6):1757-1764.
  • 48.Sun Y,Tang CS,Jin HF,Du JB.The vasorelaxing effect of hydrogen sulfide onisolated rat aortic rings versus pulmonary artery rings.Acta Pharmacol Sin 2011; 32(4):456-464.
  • 49.Li L,Whiteman M,Guan YY,Neo KL,Cheng Y,Lee SW,Zhao Y,Baskar R,Tan CH,Moore PK.Characterization of a novel,water-soluble hydrogen sulfide-releasing molecule (GYY4137):New insights into the biology of hydrogen sulfide.Circulation 2008; 117(18):2351-2360.
  • 50.Dellinger RP,Carlet JM,Masur H,Gerlach H,Calandra T,Cohen J,Gea-Banacloche J,Keh D,Marshall JC,Parker MM,Ramsay G,Zimmerman JL,Vincent JL,Levy MM.Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock.Intensive Care Med 2004;30(4):536-555.
  • 51.Landry DW,Levin HR,Gallant EM,Ashton RC Jr,Seo S,D'Alessandro D,Oz MC,Oliver JA.Vasopressin deficiency contributes to the vasodilation of septic shock.Circulation 1997; 95(5):1122-1125.
  • 52.Landry DW,Levin HR,Gallant EM,Seo S,D'Alessandro D,Oz MC,Oliver JA.Vasopressin pressor hypersensitivity in vasodilatory septic shock.Crit Care Med 1997; 25(8):1279-1282.
  • 53.Holmes CL,Walley KR,Chittock DR,Lehman T,Russell JA.The effects of vasopressin on hemodynamics and renal function in severe septic shock:a case series.Intensive Care Med 2001; 27(8):1416-1421.
  • 54.Shi W,Cui N,Shi Y,Zhang X,Yang Y,Jiang C.Arginine vasopressin inhibits Kir6.1/SUR2B channel and constricts the mesenteric artery via Vla receptor and protein kinase C.Am J Physiol Regul Integr Comp Physiol 2007; 293(1):R191-199.
  • 55.Tan JH,A1 Abed A,Brock JA.Inhibition of KATP channels in the rat tail artery by neurally released noradrenaline acting on postjunctional α2-adrenoceptors.J Physiol 2007; 581(2):757-765.
  • 56.Park WS,Ko EA,Han J,Kim N,Earm YE.Endothelin-1 acts via protein kinase C to block KATP channels in rabbit coronary and pulmonary arterial smooth muscle cells.J Cardiovasc Pharmaco12005; 45(2):99-108.
  • 57.Kubo M,Quayle JM,Standen NB.Angiotensin Ⅱ inhibition of ATP-sensitive K+ currents in rat arterial smooth muscle cells through protein kinase C.J Physiol 1997; 503(Pt 3):489-496.
  • 58.Bonev AD,Nelson MT.Vasoconstrictors inhibit ATP-sensitive K+ channels in arterial smooth muscle through protein kinase C.J Gen Physiol 1996; 108(4):315-323.
  • 59.Tanaka E,Mori H,Chujo M,Yamakawa A,Mohammed MU,Shinozaki Y,Tobita K,Sekka T,Ito K,Nakazawa H.Coronary vasoconstrictive effects of neuropeptide Y and their modulation by the ATP-sensitive potassium channel in anesthetized dogs.J Am Coll Cardiol 1997; 29(6):1380-1389.
  • 60.Kleppisch T,Nelson MT.Adenosine activates ATP-sensitive potassium channels in arterial myocytes via A2 receptors and cAMP-dependent protein kinase.Proc Natl Acad Sci U S A 1995; 92(26):12441-12445.
  • 61.Mutafova-Yambolieva VN,Keef KD.Adenosine-induced hyperpolarization in guinea pig coronary artery involves A2b receptors and KATP channels.Am J Physiol 1997; 273(6 Pt 2):H2687-H2695.
  • 62.Yang Y,Shi Y,Guo S,Zhang S,Cui N,Shi W,Zhu D,Jiang C.PKA-dependent activation of the vascular smooth muscle isoform of KATP channels by vasoactive intestinal polypeptide and its effect on relaxation of the mesenteric resistance artery.Biochim Biophys Acta 2008; 1778(1):88-96.
  • 63.Green BD,Hand KV,Dougan JE,McDonnell BM,Cassidy RS,Grieve DJ.GLP-1 and related peptides cause concentration-dependent relaxation of rat aorta through a pathway involving KATP and cAMP.Arch Biochem Biophys 2008;478(2):136-142.
  • 64.Shi Y,Cui N,Shi W,Jiang C.A short motif in Kir6.1 consisting of four phosphorylation repeats underlies the vascular KATP channel inhibition by protein kinase C.J Biol Chem 2008; 283(5):2488-2494.
  • 65.Jiao J,Garg V,Yang B,Elton TS,Hu K.Protein kinase Cepsilon induces caveolin-dependent internalization of vascular adenosine 5'-triphosphate-sensitive K+ channels.Hypertension 2008; 52(3):499-506.
  • 66.Haba M,Hatakeyama N,Kinoshita H,Teramae H,Azma T,Hatano Y,Matsuda N.The modulation of vascular ATP-sensitive K+ channel function via the phosphatidylinositol 3-kinase-Akt pathway activated by phenylephrine.J Pharmacol Exp Ther 2010; 334(2):673-678.
  • 67.Kinoshita H,Matsuda N,Kaba H,Hatakeyama N,Azma T,Nakahata K,Kuroda Y,Tange K,Iranami H,Hatano Y.Roles of phosphatidylinositol 3-kinase-Akt and NADPH oxidase in adenosine 5'-triphosphate-sensitive K+ channel function impaired by high glucose in the human artery.Hypertension 2008; 52(3):507-513.
  • 68.Quinn KV,Giblin JP,Tinker A.Multisite phosphorylation mechanism for protein kinase A activation of the smooth muscle ATP-sensitive K+ channel.Circ Res 2004; 94(10):1359-1366.
  • 69.Shi Y,Wu Z,Cui N,Shi W,Yang Y,Zhang X,Rojas A,Ha BT,Jiang C.PKA phosphorylation of SUR2B subunit underscores vascular KATP channel activation by beta-adrenergic receptors.Am J Physiol Regul Integr Comp Physiol 2007;293(3):R1205-R1214.
  • 70.Purves GI,Kamishima T,Davies LM,Quayle JM,Dart C.Exchange protein activated by cAMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATP-sensitive potassium channels.J Physiol 2009; 587(Pt 14):3639-3650.
  • 71.Orie NN,Thomas AM,Perrino BA,Tinker A,Clapp LH.Ca2+ /calclneurin regulation of cloned vascular KATP channels:crosstalk with the protein kinase A pathway.Br J Pharmacol 2009; 157(4):554-564.
  • 72.Maritim AC,Sanders RA,Watkins JB 3rd.Diabetes,oxidative stress,and antioxidants:a review.J Biochem Mol Toxicol 2003; 17(1):24-38.
  • 73.Ross J,Armstead WM.Differential role of PTK and ERK MAPK in superoxide impairment of KATP and KCa channel cerebrovasodilation.Am J Physlol Regul Integr Comp Physiol 2003; 285(1):R149-R154.
  • 74.Yang Y,Shi W,Cui N,Wu Z,Jiang C.Oxidative stress inhibits vascular KATP channels by S-glutathionylation.J Biol Chem 2010; 285(49):38641-38648.
  • 75.Erdos B,Simandle SA,Snipes JA,Miller AW,Busija DW.Potassium channel dysfunction in cerebral arteries of insulinresistant rats is mediated by reactive oxygen species.Stroke 2004; 35(4):964-969.
  • 76.Miura H,Wachtel RE,Loberiza FR Jr,Saito T,Miura M,Nicolosi AC,Gutterman DD.Diabetes mellitus impairs vasodilation to hypoxia in human coronary arterioles:reduced activity of ATP-sensitive potassium channels.Orc Res 2003;92(2):151-158.
  • 77.Yang Y,Shi W,Chen X,Cui N,Konduru AS,Shi Y,Trower TC,Zhang S,Jiang C.Molecular basis and structural insight of vascular KATP channel gating by S-glutathionylation.J Biol Chem 2011; 286(11):9298-9307.
  • 78.Ren Y,Xu X,Wang X.Altered mRNA expression of ATP-sensitive and inward rectifier potassium channel subunits in streptozotocin-induced diabetic rat heart and aorta.J Pharmacol Sci 2003; 93(4):478-483.
  • 79.Fan LH,Tian HY,Wang J,Huo JH,Hu Z,Ma AQ,Cao YX.Downregulation of Kir6.1/SUR2B channels in the obese rat aorta.Nutrition 2009; 25(3):359-363.
  • 80.Chatterjee S,Al-Mehdi AB,Levitan I,Stevens T,Fisher AB.Shear stress increases expression ofa KATP channel in rat and bovine pulmonary vascular endothelial cells.Am J Physiol Cell Physio12003; 285(4):C959-C967.
  • 81.Taguchi H,Heistad DD,Kitazono T,Faraci FM.ATP-sensitive K+ channels mediate dilatation of cerebral arterioles during hypoxia.Circ Res 1994; 74(5):1005-1008.
  • 82.Xiao D,Longo LD,Zhang L.Role of KTP and L-type Ca2+ channel activities in regulation of ovine uterine vascular contractility:effect of pregnancy and chronic hypoxia.Am J Obstet Gynecol 2010; 203(6):596e6-596e12.
  • 83 Raeis V,Philip-Couderc P,Roatti A,Habre W,Sierra J,Kalangos A,Beghetti M,Baertschi AJ.Central venous hypoxemia is a determinant of human atrial ATP-sensitive potassium channel expression:evidence for a novel hypoxiainducible factor 1α-Forkhead box class O signaling pathway.Hypertension 2010; 55(5):1186-1192.
  • 84.Vanelli G,Hussain SN,Aguggini G.Glibenclamide,a blocker of ATP-sensitive potassium channels,reverses endotoxininduced hypotension in pig.Exp Physiol 1995; 80(1):167-170.
  • 85.Landry DW,Oliver JA.The ATP-sensitive K+ channel mediates hypotension in endotoxemia and hypoxic lactic acidosis in dog.J Clin Invest 1992; 89(6):2071-2074.
  • 86.Kovalev H,Quayle JM,Kamishima T,Lodwick D.Molecular analysis of the subtype-selective inhibition of cloned KATP channels by PNU-37883A.Br J Pharmacol 2004; 141(5):867-873.
  • 87.O'Brien A J,Thakur G,Buckley JF,Singer M,Clapp LH.The pore-forming subunit of the KATP channel is an important molecular target for LPS-induced vascular hyporeactivity in vitro.Br J Pharmaco12005; 144(3):367-375.
  • 88.Czaika G,Gingras Y,Zhu E,Comtois AS.Induction of the ATP-sensitive potassium (uKATP-1) channel by endotoxemia.Muscle Nerve 2000; 23(6):967-969.
  • 89.Jin X,Malykhina AP,Lupu F,Akbarali HI.Altered gene expression and increased bursting activity of colonic smooth muscle ATP-sensitive K+ channels in experimental colitis.Am J Physiol Gastrointest Liver Physiol 2004; 287(1):G274-G285.
  • 90.Shi W,Cui N,Wu Z,Yang Y,Zhang S,Gai H,Zhu D,Jiang C.Lipopolysaccharides up-regulate Kir6.1/SUR2B channel expression and enhance vascular KATP channel activity via NF-κB-dependent signaling.J Biol Chem 2010; 285(5):30213029.
  • 91.Collin S,Sennoun N,Dron AG,de la Bourdonnaye M,Montemont C,Asfar P,Lacolley P,Meziani F,Levy B.Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock.Intensive Care Med 2011; 37(5):861-869.
  • 92.Yu L,Jin X,Yang Y,Cui N,Jiang C.Rosiglitazone inhibits vascular KATP channels and coronary vasodilation produced by isoproterenol.Br J Pharmaco12011; 164(8):2064-2072.
  • 93.Aziz Q,Thomas A,Khambra T,Tinker A.Phenformin has a direct inhibitory effect on the ATP-sensitive potassium channel.Eur J Pharmaco12010; 634(1-3):26-32.
WanfangData CO.,Ltd All Rights Reserved
About WanfangData | Contact US
Healthcare Department, Fuxing Road NO.15, Haidian District Beijing, 100038 P.R.China
Tel:+86-010-58882616 Fax:+86-010-58882615 Email:yiyao@wanfangdata.com.cn