Epithelial K+ channels: driving force generation and K+ recycling for epithelial transport with physiological and clinical implications

( views:67, downloads:0 )
Author:
BLEICH Markus()
SHAN Qi-Xian()
Journal Title:
ACTA PHYSIOLOGICA SINICA
Issue:
Volume 59, Issue 04, 2007
DOI:
Key Word:
potassium;ion channel;colon;kidney;stomach;proximal tubule;parietal cell

Abstract: K+ channels form a large family of membrane proteins that are expressed in a polarized fashion in any epithelial cell. Based on the transmembrane gradient for K+ that is maintained by the Na+-K+-ATPase, these channels serve two principal functions for transepithelial transport: generation of membrane voltage and recycling of K+. In this brief review, we will outline the importance of this ancient principle by examples of epithelial transport in the renal proximal tubule and gastric parietal cells. In both tissues, K+ channel activity is rate-limiting for transport processes across the epithelial cells and essential for cell volume regulation. Recent experimental data using pharmacological tools and genetically modified animals have confirmed the original physiological concepts and specified the knowledge down to the molecular level. The development of highly active and tissue selective small molecule therapeutics has been impeded by two typical features of K+ channels: their molecular architecture challenges the design of molecules with high affinity binding and they are expressed in a variety of tissues at the same time. Nevertheless, new insights into pathophysiology, e.g. that K+channel inhibition can block gastric acid secretion, render the clinical use of K+ channel drugs in gastric disease and as kidney transport inhibitors highly attractive.

  • [1]Greger R,Bleich M.Normal values for physiological parameters.In:Comprehensive Human Physiology-From Cellular Mechanism to Integration.Greger R,Windhorst U.eds.Berlin Heidelberg New York:Springer Verlag,1996,2427-2450.
  • [2]Greger R.The cell and its membranes.In:Comprehensive Human Physiology -From Cellular Mechanism to Integration.Greger R,Windhorst U.eds.Berlin Heidelberg New York:Springer Verlag,1996,79-95.
  • [3]Giebisch GH.A trail of research on potassium.Kidney Int 2002;62:1498-1512.
  • [4]Hebert SC,Desir G,Giebisch G,Wang W.Molecular diversity and regulation of renal potassium channels.Physiol Rev 2005;85:319-371.
  • [5]Warth R.Potassium channels in epithelial transport.Pflügers Arch 2003; 446:505-513.
  • [6]Ussing HH,Eskesen K.Mechanism of isotonic water transport in glands.Acta Physiol Scand 1989; 136:443-454.
  • [7]Larsen EH,Mobjerg N.Na+ recirculation and isosmotic transport.J Membr Biol 2006; 212:1-15.
  • [8]Schafer JA.Transepithelial osmolality differences,hydraulic conductivities,and volume absorption in the proximal tubule.Annu Rev Physiol 1990; 52:709-726.
  • [9]Wright EM,Hirayama BA,Loo DF.Active sugar transport in health and disease.J Intern Med 2007; 261:32-43.
  • [10]Lang F,Messner G,Rehwald W.Electrophysiology of sodiumcoupled transport in proximal renal tubules.Am J Physiol 1986;250:F953-F962.
  • [11]Vallon V,Grahammer F,Volkl H,Sandu CD,Richter K,Rexhepaj R,Gerlach U,Rong Q,Pfeifer K,Lang F.KCNQ1-dependent transport in renal and gastrointestinal epithelia.Proc Natl Acad Sci USA 2005; 102:17864-17869.
  • [12]Vallon V,Grahammer F,Richter K,Bleich M,Lang F,Barhanin J,V(o)lkl H,Warth R.Role of KCNE1-dependent K+ fluxes in mouse proximal tubule.J Am Soc Nephrol 2001; 12:2003-2011.
  • [13]Yao X,Tian S,Chan HY,Biemesderfer D,Desir GV.Expression of KCNA 10,a voltage-gated K channel,in glomerular endothelium and at the apical membrane of the renal proximal tubule.J Am Soc Nephrol 2002; 13:2831-2839.
  • [14]Cluzeaud F,Reyes R,Escoubet B,Fay M,Lazdunski M,Bonvalet JP,Lesage F,Farman N.Expression of TWIK-1,a novel weakly inward rectifying potassium channel in rat kidney.Am J Physiol 1998; 275:C1602-C1609.
  • [15]Nie X,Arrighi I,Kaissling B,Pfaff I,Mann J,Barhanin J,Vallon V.Expression and insights on function of potassium channel TWIK-1 in mouse kidney.Pflügers Arch 2005; 451:479-488.
  • [16]Murer H,Forster I,Biber J.The sodium phosphate cotransporter family SLC34.Pflügers Arch 2004; 447:763-767.
  • [17]Forster IC,Hernando N,Biber J,Murer H.Proximal tubular handling of phosphate:A molecular perspective.Kidney Int 2006;70:1548-1559.
  • [18]Kawahara K,Ogawa A,Suzuki M.Hyposmotic activation of Ca-activated K channels in cultured rabbit kidney proximal tubule cells.Am J Physiol 1991; 260:F27-F33.
  • [19]Merot J,Bidet M,Le Maout S,Tauc M,Poujeol P.Two types of K+ channels in the apical membrane of rabbit proximal tubule in primary culture.Biochim Biophys Acta 1989; 978:134-144.
  • [20]Barriere H,Rubera I,Belfodil R,Tauc M,Tonnerieux N,Poujeol C,Barhanin J,Poujeol P.Swelling-activated chloride and potassium conductance in primary cultures of mouse proximal tubules.Implication of KCNE1 protein.J Membr Biol 2003; 193:153-170.
  • [21]G(o)gelein H.Ion channels in mammalian proximal renal tubules.Renal Physiol Biochem 1990; 13:8-25.
  • [22]Lang R,Lee G,Liu W,Tian S,Raft H,Orias M,Segal AS,Desir GV.KCNA10:a novel ion channel functionally related to both voltage-gated potassium and CNG cation channels.Am J Physiol 2000; 278:F1013-F1021.
  • [23]Lesage F,Guillemare E,Fink M,Duprat F,Lazdunski M,Romey G,Barhanin J.TWIK-1,a ubiquitous human weakly inward rectifying K+ channel with a novel structure.EMBO J 1996; 15:1004-1011.
  • [24]Sesti F,Goldstein SA.Single-channel characteristics of wildtype IKs channels and channels formed with two mink mutants that cause long QT syndrome.J Gen Physiol 1998; 112:651-663.
  • [25]Noulin JF,Brochiero E,Lapointe JY,Laprade R.Two types of K+ channels at the basolateral membrane of proximal tubule:inhibitory effect of taurine.Am J Physiol 1999; 277:F290-F297.
  • [26]Tsuchiya K,Wang W,Giebisch G,Welling PA.ATP is a coupling modulator of parallel Na,K-ATPase-K-channel activity in the renal proximal tubule.Proc Natl Acad Sci USA 1992; 89:6418-6422.
  • [27]Beck JS,Hurst AM,Lapointe JY,Laprade R.Regulation of basolateral K channels in proximal tubule studied during continuous microperfusion.Am J Physiol 1993; 264:F496-F501.
  • [28]Ye B,Liu Y,Zhang Y.Properties of a potassium channel in the basolateral membrane of renal proximal convoluted tubule and the effect of cyclosporine on it.Physiol Res 2006; 55:617-622.
  • [29]Brochiero E,Wallendorf B,Gagnon D,Laprade R,Lapointe JY.Cloning of rabbit Kir6.1,SUR2A,and SUR2B:possible candidates for a renal KATP channel.Am J Physiol 2002; 282:F289-F300.
  • [30]Derst C,Hirsch JR,Preisig-Muller R,Wischmeyer E,Karschin A,Doting F,Thomzig A,Veh RW,Schlatter E,Kummer W,Daut J.Cellular localization of the potassium channel Kir7.1 in guinea pig and human kidney.Kidney Int 2001; 59:2197-2205.
  • [31]Tucker SJ,Imbrici P,Salvatore L,D'Adamo MC,Pessia M.pH dependence of the inwardly rectifying potassium channel,Kir5.1,and localization in renal tubular epithelia.J Biol Chem 2000; 275:16404-16407.
  • [32]Derst C,Karschin C,Wischmeyer E,Hirsch JR,Preisig-Muller R,Rajan S,Engel H,Grzeschik K,Daut J,Karschin A.Genetic and functional linkage of Kir5.1 and Kir2.1 channel subunits.FEBS Lett 2001; 491:305-311.
  • [33]Levy DI,Velazquez H,Goldstein SA,Bockenhauer D.Segmentspecific expression of 2P domain potassium channel genes in human nephron.Kidney Int 2004; 65:918-926.
  • [34]Morton MJ,Abohamed A,Sivaprasadarao A,Hunter M.pH sensing in the two-pore domain K+ channel,TASK2.Proc Natl Acad Sci USA 2005; 102:16102-16106.
  • [35]Warth R,Barriere H,Meneton P,Bloch M,Thomas J,Tauc M,Heitzmann D,Romeo E,Verrey F,Mengual R,Guy N,Bendahhou S,Lesage F,Poujeol P,Barhanin J.Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport.Proc Natl Acad Sci USA 2004; 101:8215-8320.
  • [36]Gu W,Schlichthorl G,Hirsch JR,Engels H,Karschin C,Karschin A,Derst C,Steinlein OK,Daut J.Expression pattern and functional characteristics of two novel splice variants of the twopore-domain potassium channel TREK-2.J Physiol 2002; 539:657-668.
  • [37]Reeves WB,Shah SV.Activation of potassium channels contri butes to hypoxic injury in proximal tubules.J Clin Invest 1994;94:2289-2294.
  • [38]Morton MJ,Chipperfield S,Abohamed A,Sivaprasadarao A,Hunter M.Na+-induced inward rectification in the two-pore domain K+ channel,TASK-2.Am J Physiol 2005; 288:F162-F169.
  • [39]Paulais M,Lachheb S,Teulon J.A Na+-and Cl--activated K+channel in the thick ascending limb of mouse kidney.J Gen Physiol 2006; 127:205-215.
  • [40]Coppola S,Fr(o)mter E.An electrophysiological study of angiotensin Ⅱ regulation of NaHCO3 cotransport and K conductance in renal proximal tubules I.Effect of picomolar concentrations.Pflügers Arch 1994; 427:143-150.
  • [41]Beck JS,Potts DJ.Acetazolamide and transient responses of basolateral membrane potential of rabbit kidney proximal tubules perfused in vitro.J Physiol (Lond) 1989; 416:337-348.
  • [42]Reyes R,Duprat F,Lesage F,Fink M,Salinas M,Farman N,Lazdunski M.Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney.J Biol Chem 1998; 273:30863-30869.
  • [43]Waldegger S.Heartburn:cardiac potassium channels involved in parietal cell acid secretion.Pflügers Arch 2003; 446:143-147.
  • [44]Yao X,Forte JG.Cell biology of acid secretion by the parietal cell.Annu Rev Physiol 2003; 65:103-131.
  • [45]Reenstra WW,Forte JG.Characterization of K+ and Cl-conductances in apical membrane vesicles from stimulated rabbit oxyntic cells.Am J Physiol 1990; 259:G850-G858.
  • [46]Wolosin JM,Forte JG.Stimulation of oxyntic cell triggers K+and Cl-conductances in apical H+-K+-ATPase membrane.Am J Physiol 1984; 246:C537-C545.
  • [47]Greger R,Nitschke RB,Lohrmann E,Burhoff I,Hropot M,Englert HC,Lang HJ.Effects of arylaminobenzoate-type chloride channel blockers on equivalent short-circuit current in rabbit colon.Pflügers Arch 1991; 419:190-196.
  • [48]Bleich M,Warth R.The very small conductance K+ channel KvLQT1 and epithelial function.Pflügers Arch 2000; 440:202-206.
  • [49]Gerlach U,Brendel J,Lang H J,Paulus EF,Weidmann K,Bruggemann A,Busch AE,Suessbrich H,Bleich M,Greger R.Synthesis and activity of novel and selective IKs channel blockers.J Med Chem 2001; 44:3831-3837.
  • [50]Grahammer F,Herling AW,Lang HJ,Schmitt-Graff A,Wittekindt OH,Nitschke R,Bleich M,Barhanin J,Warth R.The cardiac K+channel KCNQ1 is essential for gastric acid secretion.Gastroenterology 2001; 120:1363-1371.
  • [5l]Ecke D,Bleich M,Lohrmann E,Hropot M,Englert HC,Lang HJ,Warth R,Rohm W,Schwartz B,Fraser G,Greger R.A chromanol type of K+ channel blocker inhibits forskolin-but not carbachol mediated Cl-secretion in rat and rabbit colon.Cell Physiol Biochem 1995; 5:204-210.
  • [52]Busch AE,Suessbrich H,Waldegger S,Greger R,Lang HJ,Lang F,Gibson KJ,Maylik RG.Inhibition of IKs in guinea pig cardiac myocytes and guinea pig IsK channels by the chromanol 293B.Pflügers Arch 1996; 432:1094-1096.
  • [53]Bleich M,Briel M,Busch AE,Lang HJ,Gerlach U,G(o)gelein H,Greger R,Kunzelmann K.KvLQT channels are inhibited by the K+ channel blocker 293B.Pflügers Arch 1997; 434:499-501.
  • [54]Lee MP,Ravenel JD,Hu RJ,Lustig LR,Tomaselli G,Berger RD,Brandenburg SA,Litzi TJ,Bunton TE,Limb C,Francis H,Gorelikow M,Gu H,Washington K,Argani P,Goldenring JR,Coffey RJ,Feinberg AP.Targeted disruption of the Kvlqtl gene causes deafness and gastric hyperplasia in mice.J Clin Invest 2000; 106:1447-1455.
  • [55]Dedek K,Waldegger S.Colocalization of KCNQ1/KCNE channel subunits in the mouse gastrointestinal tract.Pflügers Arch 2001; 442:896-902.
  • [56]Sanguinetti MC.Maximal function of minimal K+ channel subunits.Trends Pharmacol Sci 2000; 21:199-201.
  • [57]Sanguinetti MC,Curran ME,Zou A,Shen J,Spector PS,Atkinson DL,Keating MT.Coassembly of KvLQT1 and mink (IsK) proteins to form cardiac IKs potassium channel.Nature 1996; 384:80-83.
  • [58]Barhanin J,Lesage F,Guillemare E,Fink M,Lazdunski M,Romey G.KvLQT1 and IsK (minK) proteins associate to form the IKs cardiac potassium current.Nature 1996; 384:78-80.
  • [59]Schroeder BC,Waldegger S,Fehr S,Bleich M,Warth R,Greger R,Jentsch TJ.A constitutively open potassium channel formed by KCNQ1 and KCNE3.Nature 2000; 403:196-199.
  • [60]Tinel N,Diochot S,Borsotto M,Lazdunski M,Barhanin J.KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel.EMBO J 2000; 19(23):6326-6330.
  • [61]Heitzmann D,Koren V,Wagner M,Sterner C,Reichold M,Tegtmeier I,Volk T,Warth R.KCNE beta subunits determine pH sensitivity of KCNQ1 potassium channels.Cell Physiol Biochem 2007; 19:21-32.
  • [62]Heitzmann D,Grahammer F,von HT,Schmitt-Graff A,Romeo E,Nitschke R,Gerlach U,Lang HJ,Verrey F,Barhanin J,Warth R.Heteromeric KCNE2/KCNQ1 potassium channels in the luminal membrane of gastric parietal cells.J Physiol 2004; 561:547-57.
  • [63]Roepke TK,Anantharam A,Kirchhoff P,Busque SM,Young JB,Geibel JP,Lerner DJ,Abbott GW.The KCNE2 potassium channel ancillary subunit is essential for gastric acid secretion.J Biol Chem 2006; 281:23740-23747.
  • [64]Lambrecht NW,Yakubov I,Scott D,Sachs G.Identification of the K efflux channel coupled to the gastric H-K-ATPase during acid secretion.Physiol Genomics 2005; 21:81-91.
  • [65]Malinowska DH,Sherry AM,Tewari KP,Cuppoletti J.Gastric parietal cell secretory membrane contains PKA-and acid-activated Kir2.1 K+ channels.Am J Physiol 2004; 286:C495-C506.
  • [66]Malinowska DH,Kupert EY,Bahinski A,Sherry AM,Cuppoletti J.Cloning,functional expression,and characterization of a PKAactivated gastric Cl-channel.Am J Physiol 1995; 268:C191-C200.
  • [67]Fujita A,Horio Y,Higashi K,Mouri T,Hata F,Takeguchi N,Kurachi Y.Specific localization of an inwardly rectifying K+ channel,Kir4.1,at the apical membrane of rat gastric parietal cells; its possible involvement in K+ recycling for the H+-K+ pump.J Physiol 2002; 540:85-92.
  • [68]Zaritsky JJ,Redell JB,Tempel BL,Schwarz TL.The consequences of disrupting cardiac inwardly rectifying K+ current (IKl) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes.J Physiol 2001; 533:697-710.
  • [69]Geibel JP.Role of potassium in acid secretion.World J Gastroenterol 2005; 11:5259-5265.
  • [70]Greger R.Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron.Physiol Rev 1985; 65:760-797.
WanfangData CO.,Ltd All Rights Reserved
About WanfangData | Contact US
Healthcare Department, Fuxing Road NO.15, Haidian District Beijing, 100038 P.R.China
Tel:+86-010-58882616 Fax:+86-010-58882615 Email:yiyao@wanfangdata.com.cn