Nrf2/ARE regulated antioxidant gene expression in endothelial and smooth muscle cells in oxidative stress: implications for atherosclerosis and preeclampsia

( views:89, downloads:0 )
Author:
Giovanni E.Mann()
J(o)rg Niehueser-Saran()
Alan Watson()
Ling Gao()
Tetsuro Ishii()
Patricia de Winter()
Richard C.M.Siow()
Journal Title:
ACTA PHYSIOLOGICA SINICA
Issue:
Volume 59, Issue 02, 2007
DOI:
Key Word:
nuclear factor-erythroid 2-related factor 2;antioxidant response element

Abstract: Increased generation of reactive oxygen species (ROS) in vascular diseases such as atherosclerosis, diabetes, chronic renal failure and preeclampsia readily leads to impaired endothelium-dependent relaxation and vascular injury. To counteract ROS- and electrophile-mediated injury, cells can induce a number of genes encoding phase Ⅱ detoxifying enzymes and antioxidant proteins. A cisacting transcriptional regulatory element, designated as antioxidant response element (ARE) or electrophile response element (EpRE),mediates the transcriptional activation of genes such as hene oxygenase-1, γ-glutamylcysteine synthethase, thioredoxin reductase,glutathione-S-transferase and NAD(P)H:quinone oxidoreductase. Other antioxidant enzymes such as superoxide dismutase and catalase and non-enzymatic scavengers such as glutathione are also involved in scavenging ROS. Nuclear factor-erythroid 2-related factor 2 (Nrf2), a member of the Cap 'n' Collar family of basic region-leucine zipper (bZIP) transcription factors, plays an important role in ARE-mediated antioxidant gene expression. Kelch-like ECH-associated protein-1 (Keap1) normally sequesters Nrf2 in the cytoplasm in association with the actin cytoskeleton, but upon oxidation of cysteine residues Nrf2 dissociates from Keap1, translocates to the nucleus and binds to ARE sequences leading to transcriptional activation of antioxidant and phase Ⅱ detoxifying genes. Protein kinase C (PKC), mitogen-activated protein kinases (MAPKs) and phosphotidylinositol 3-kinase (PI3K) have been implicated in the regulation of Nrf2/ARE signaling. We here review the evidence that the Nrf2/ARE signaling pathway plays an important role in vascular homeostasis and the defense of endothelial and smooth muscle cells against sustained oxidative stress associated with diseases such as atherosclerosis and preeclampsia.

  • [1]Furchgott RF,Zawadzki JV.The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.Nature 1980; 288:373-376.
  • [2]Ignarro LJ.Biosynthesis and metabolism of endotheliumderived nitric oxide.Annu Rev Pharmacol Toxicol 1990; 30:535-560.
  • [3]Moncada S,Palmer RMJ,Higgs EA.Nitric oxide:Physiology,pathophysiology,and pharmacology.Pharmacol Rev 1991; 43:109-142.
  • [4]Mann GE,Yudilevich DL,Sobrevia L.Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells.Physiol Rev 2003; 83:183-252.
  • [5]Wyatt AW,Steinert JR,Mann GE.Modulation of the L-arginine/nitric oxide signalling pathway in vascular endothelial cells.Biochem Soc Symp 2004; 71:143-156.
  • [6]Sobrevia L,Mann GE.Dysfunction of the endothelial nitric oxide signalling pathway in diabetes and hyperglycaemia.Exp Physiol 1997; 82(3):423-452.
  • [7]Mendes Ribeiro AC,Brunini TM,Ellory JC,Mann GE.Abnormalities in L-arginine transport and nitric oxide biosynthesis in chronic renal and heart failure.Cardiovasc Res 2001; 49:697-712.
  • [8]Brunini TM,Mendes-Ribeiro AC,Ellory JC,Mann GE.Platelet nitric oxide synthesis in uremia and malnutrition:A role for Larginine supplementation in vascular protection? Cardiovasc Res 2007; 73:359-367.
  • [9]Bogle RG,Coade SB,Moncada S,Pearson JD,Mann GE.Bradykinin and ATP stimulate L-arginine uptake and nitric oxide release in vascular endothelial cells.Biochem Biophys Res Commun 1991; 180:926-932.
  • [10]Boo YC,Jo H.Flow-dependent regulation of endothelial nitric oxide synthase:role of protein kinases.Am J Physiol Cell Physiol 2003; 285:C499-C508.
  • [11]Garcia-Cardena G,Fan R,Shah V,Sorrentino R,Cirino G,Papapetropoulos A,Sessa WC.Dynamic activation of endothelial nitric oxide synthase by Hsp90.Nature 1998; 392:821-824.
  • [12]Wyatt AW,Steinert JR,Wheeler-Jones CP,Morgan AJ,Sugden D,Pearson JD,Sobrevia L,Mann GE.Early activation of the p42/p44MAPK pathway mediates adenosine-induced nitric oxide production in human endothelial cells:a novel calcium-insensitive mechanism.FASEB J 2002; 16:1584-1594.
  • [13]Joy S,Siow RC,Rowlands DJ,Becker M,Wyatt AW,Aaronson PI,Coen CW,Kallo I,Jacob R,Mann GE.The isoflavone Equol mediates rapid vascular relaxation:Ca2+-independent activation of endothelial nitric-oxide synthase/Hsp90 involving ERK1/2 and Akt phosphorylation in human endothelial cells.J Biol Chem 2006; 281:27335-27345.
  • [14]Queen LR,Ji Y,Xu B,Young L,Yao K,Wyatt AW,Rowlands DJ,Siow RC,Mann GE,Ferro A.Mechanisms underlying beta2-adrenoceptor-mediated nitric oxide generation by human umbilical vein endothelial cells.J Physiol 2006; 576:585-594.
  • [15]Mahn K,Borras C,Knock GA,Taylor P,Khan IY,Sugden D,Poston L,Ward JP,Sharpe RM,Vina J,Aaronson PI,Mann GE.Dietary soy isoflavone induced increases in antioxidant and eNOS gene expression lead to improved endothelial function and reduced blood pressure in vivo.FASEB J 2005; 19:1755-1757.
  • [16]Knock GA,Mahn K,Mann GE,Ward JP,Aaronson PI.Dietary soy modulates endothelium-dependent relaxation in aged male rats:Increased agonist-induced endothelium-derived hyperpolarising factor and basal nitric oxide activity.Free Radic Biol Med 2006; 41:731-739.
  • [17]Darley-Usmar V,Halliwell B.Blood radicals:reactive nitrogen species,reactive oxygen species,transition metal ions,and the vascular system.Pharm Res 1996; 13:649-662.
  • [18]Halliwell B.Lipid peroxidation,antioxidants and cardiovascular disease:how should we move forward? Cardiovasc Res 2000;47:410-418.
  • [18]Llurba E,Gratacos E,Martin-Gallan P,Cabero L,Dominguez C.A comprehensive study of oxidative stress and antioxidant status in preeclampsia and normal pregnancy.Free Radic Biol Med 2004; 37:557-570.
  • [20]Griendling KK,FitzGerald GA.Oxidative stress and cardiovascular injury:Part Ⅱ:animal and human studies.Circulation 2003;108:2034-2040.
  • [21]Simmons RA.Developmental origins of diabetes:the role of oxidative stress.Free Radic Biol Med 2006; 40:917-922.
  • [22]Jay D,Hitomi H,Griendling KK.Oxidative stress and diabetic cardiovascular complications.Free Radic Biol Med 2006; 40:183-192.
  • [23]Beckman JS,Koppenol WH.Nitric oxide,superoxide,and peroxynitrite:the good,the bad,and ugly.Am J Physiol 1996; 271:C1424-C1437.
  • [24]Pritchard KA,Jr.,Ackerman AW,Gross ER,Stepp DW,Shi Y,Fontana JT,Baker JE,Sessa WC.Heat shock protein 90 mediates the balance of nitric oxide and superoxide anion from endothelial nitric-oxide synthase.J Biol Chem 2001; 276:17621-1764.
  • [25]Bendall JK,Alp NJ,Warrick N,Cai S,Adlam D,Rockett K,Yokoyama M,Kawashima S,Channon KM.Stoichiometric relationships between endothelial tetrahydrobiopterin,endothelial NO synthase (eNOS) activity,and eNOS coupling in vivo:insights from transgenic mice with endothelial-targeted GTP cyclohydrolase 1 and eNOS overexpression.Circ Res 2005; 97:864-871.
  • [26]Mahdy Z,Otun HA,Dunlop W,Gillespie JI.The responsiveness of isolated human hand vein endothelial cells in normal pregnancy and in pre-eclampsia.J Physiol 1998; 508:609-617.
  • [27]Kublickiene KR,Lindblom B,Kruger K,Nisell H.Preeclampsia:evidence for impaired shear stress-mediated nitric oxide release in uterine circulation.Am J Obstet Gynecol 2000; 3:160-166.
  • [28]Raijmakers MT,Dechend R,Poston L.Oxidative stress and preeclampsia:rationale for antioxidant clinical trials.Hypertension 2004; 44:374-380.
  • [29]Noris M,Perico N,Remuzzi G.Mechanisms of disease:Preeclampsia.Nat Clin Pract Nephrol 2005; 1:98-114.
  • [30]Redman CW,Sargent IL.Latest advances in understanding preeclampsia.Science 2005; 308:1592-1594.
  • [31]Lowe DT.Nitric oxide dysfunction in the pathophysiology of preeclampsia.Nitric Oxide 2000; 4:441-458.
  • [32]Lyall F,Young A,Greer IA.Nitric oxide concentrations are increased in the fetoplacental circulation in preeclampsia.Am J Obstet Gynecol 1995; 173:714-718.
  • [33]Myatt L,Eis AL,Brockman DE,Kossenjans W,Greer I,Lyall F.Inducible (type Ⅱ) nitric oxide synthase in human placental villous tissue of normotensive,pre-eclamptic and intrauterine growth-restricted pregnancies.Placenta 1997; 18:261-268.
  • [34]Rutherford RA,McCarthy A,Sullivan MH,Elder MG,Polak JM,Wharton J.Nitric oxide synthase in human placenta and umbilical cord from normal,intrauterine growth-retarded and pre-eclamptic pregnancies.Br J Pharmacol 1995; 116:3099-3109.
  • [35]Kukor Z,Valent S,Toth M.Regulation of nitric oxide synthase activity by tetrahydrobiopterin in human placentae from normal and pre-eclamptic pregnancies.Placenta 2000; 21:763-772.
  • [36]Steinert JR,Wyatt AW,Poston L,Jacob R,Mann GE.Preeclampsia is associated with altered Ca2+ regulation and NO production in human fetal venous endothelial cells.FASEB J 2002;16:721-723.
  • [37]Steinert JR,Poston L,Mann GE,Jacob R.Abnormalities in intracellular Ca2+ regulation in fetal vascular smooth muscle in preeclampsia:enhanced sensitivity to arachidonic acid.FASEB J 2003; 17:307-309.
  • [38]Sobrevia L,Cesare P,Yudilevich DL,Mann GE.Diabetesinduced activation of system y+ and nitric oxide synthase in human endothelial cells:association with membrane hyperpolarization.J Physiol 1995; 489:183-192.
  • [39]Aguayo C,Flores C,Parodi J,Rojas R,Mann GE,Pearson JD,Sobrevia L.Modulation of adenosine transport by insulin in human umbilical artery smooth muscle cells from normal or gestational diabetic pregnancies.J Physiol 2001; 534:243-254.
  • [40]Casanello P,Sobrevia L.Intrauterine growth retardation is associated with reduced activity and expression of the cationic amino acid transport systems y+/hCAT-1 and y+/hCAT-2B and lower activity of nitric oxide synthase in human umbilical vein endothelial cells.Circ Res 2002; 91:127-134.
  • [41]Barker DJ.Fetal programming of coronary heart disease.Trends Endocrinol Metab 2002; 13:364-368.
  • [42]Palinski W,Napoli C.The fetal origins of atherosclerosis:maternal hypercholesterolemia,and cholesterol-lowering or antioxidant treatment during pregnancy influence in utero programming and postnatal susceptibility to atherogenesis.FASEB J 2002;16:1348-1360.
  • [43]Myatt L.Placental adaptive responses and fetal programming.J Physiol 2006; 572:25-30.
  • [44]Esplin MS,Fausett MB,Fraser A,Kerber R,Mineau G,Carrillo J,Varner MW.Paternal and maternal components of the predisposition to preeclampsia.N Engl J Med 2001; 344:867-872.
  • [45]Droge W.Free radicals in the physiological control of cell function.Physiol Rev 2002; 82:47-95.
  • [46]Wolin MS.Interactions of oxidants with vascular signaling systems.Arterioscler Thromb Vasc Biol 2000; 20:1430-1442.
  • [47]Griendling KK,FitzGerald GA.Oxidative stress and cardiovascular injury:Part Ⅰ:basic mechanisms and in vivo monitoring of ROS.Circulation 2003; 108:1912-1916.
  • [48]Cai H,Griendling KK,Harrison DG.The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases.Trends Pharmacol Sci 2003; 24:471-478.
  • [49]Mueller CF,Laude K,McNally JS,Harrison DG.ATVB in focus:redox mechanisms in blood vessels.Arterioscler Thromb Vasc Biol 2005; 25:274-278.
  • [50]Keaney JF Jr.Oxidative stress and the vascular wall:NADPH oxidases take center stage.Circulation 2005; 112:2585-2588.
  • [51]Brandes RP,Kreuzer J.Vascular NADPH oxidases:molecular mechanisms of activation.Cardiovasc Res 2005; 65:16-27.
  • [52]Clempus RE,Griendling KK.Reactive oxygen species signaling in vascular smooth muscle cells.Cardiovasc Res 2006; 71:216-225.
  • [53]Halliwell B.Antioxidants in human health and disease.Annu Rev Nutr 1996; 16:33-50.
  • [54]Cave AC,Brewer AC,Narayanapanicker A,Ray R,Grieve DJ,Walker S,Shah AM.NADPH oxidases in cardiovascular health and disease.Antioxid Redox Signal 2006; 8:691-728.
  • [55]Kang SW,Chae HZ,Seo MS,Kim K,Baines IC,Rhee SG.Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha.J Biol Chem 1998; 273:6297-6302.
  • [56]Rhee SG,Chae HZ,Kim K.Peroxiredoxins:a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling.Free Radic Biol Med 2005; 38:1543-1552.
  • [57]Cadenas E.Antioxidant and prooxidant functions of DT-diaphorase in quinone metabolism.Biochem Pharmacol 1995; 49:127-140.
  • [58]Maines MD.Heme oxygenase:function,multiplicity,regulatory mechanisms,and clinical applications.FASEB J 1988; 2:2557-2568.
  • [59]Siow RC,Sato H,Mann GE.Heme oxygenase-carbon monoxide signalling pathway in atherosclerosis:anti-atherogenic actions of bilirubin and carbon monoxide? Cardiovasc Res 1999; 41:385-394.
  • [60]Wang LJ,Lee TS,Lee FY,Pai RC,Chau LY.Expression of heme oxygenase-1 in atherosclerotic lesions.Am J Pathol 1998; 152:711-720.
  • [61]Juan SH,Lee TS,Tseng KW,Liou JY,Shyue SK,Wu KK,Chau LY.Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein Edeficient mice.Circulation 2001; 104:1519-1525.
  • [62]Otterbein LE,Zuckerbraun BS,Haga M,Liu F,Song R,Usheva A,Stachulak C,Bodyak N,Smith RN,Csizmadia E,Tyagi S,Akamatsu Y,Flavell RJ,Billiar TR,Tzeng E,Bach FH,Choi AM,Soares MP.Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury.Nat Med 2003; 9:183-190.
  • [63]Ishii T,Itoh K,Takahashi S,Sato H,Yanagawa T,Katoh Y,Bannai S,Yamamoto M.Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages.J Biol Chem 2000; 275:16023-16029.
  • [64]Itoh K,Wakabayashi N,Katoh Y,Ishii T,O'Connor T,Yamamoto M.Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles.Genes Cells 2003;8:379-391.
  • [65]Kwak MK,Wakabayashi N,Kensler TW.Chemoprevention through the Keap1-Nrf2 signaling pathway by phase 2 enzyme inducers.Mutat Res 2004; 555:133-148.
  • [66]Motohashi H,Yamamoto M.Nrf2-Keap1 defines a physiologically important stress response mechanism.Trends Mol Med 2004; 10:549-557.
  • [67]Nguyen T,Sherratt PJ,Nioi P,Yang CS,Pickett CB.Nrf2 controls constitutive and inducible expression of ARE-driven genes through a dynamic pathway involving nucleocytoplasmic shuttling by Keapl.J Biol Chem 2005; 280:32485-32492.
  • [68]Kensler TW,Wakabayashi N,Biswal S.Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway.Annu Rev Pharmacol Toxicol 2007; 47:89-116.
  • [69]Huang HC,Nguyen T,Pickett CB.Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription.J Biol Chem 2002; 277:42769-42774.
  • [70]Huang HC,Nguyen T,Pickett CB.Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2.Proc Natl Acad Sci USA 2000; 97:12475-12480.
  • [71]Hayes JD,McMahon M.Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention.Cancer Lett 2001; 174:103-113.
  • [72]Lee JM,Hanson JM,Chu WA,Johnson JA.Phosphatidylinositol 3-kinase,not extracellular signal-regulated kinase,regulates activation of the antioxidant-responsive element in IMR-32 human neuroblastoma cells.J Biol Chem 2001; 276:20011-10016.
  • [73]Andreadi CK,Howells LM,Atherfold PA,Manson MM.Involvement of Nrf2,p38,B-Raf,and nuclear factor-kappaB,but not phosphatidylinositol 3-kinase,in induction of hemeoxygenase1 by dietary polyphenols.Mol Pharmacol 2006; 69:1033-1040.
  • [74]Jain AK,Jaiswal AK.Phosphorylation of tyrosine 568 controls nuclear export of Nrf2.J Biol Chem 2006; 281:12132-12142.
  • [75]Ramos-Gomez M,Kwak MK,Dolan PM,Itoh K,Yamamoto M,Talalay P,Kensler TW.Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in Nrf2 transcription factor-deficient mice.Proc Natl Acad Sci USA 2001; 98:3410-3415.
  • [76]Kwak MK,Itoh K,Yamamoto M,Kensler TW.Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents:role of antioxidant response elementlike sequences in the Nrf2 promoter.Mol Cell Biol 2002; 22:2883-2892.
  • [77]Ross R.Atherosclerosis-an inflammatory disease.N Engl J Med 1999; 340:115-126.
  • [78]Siow RC,Sato H,Leake DS,Pearson JD,Bannai S,Mann GE.Vitamin C protects human arterial smooth muscle cells against atherogenic lipoproteins:effects of antioxidant vitamins C and E on oxidized LDL-induced adaptive increases in cystine transport and glutathione.Arterioscler Thromb Vasc Biol 1998; 18:1662-1670.
  • [79]Siow RC,Ishii T,Sato H,Taketani S,Leake DS,Sweiry JH,Pearson JD,Bannai S,Mann GE.Induction of the antioxidant stress proteins heme oxygenase-1 and MSP23 by stress agents and oxidised LDL in cultured vascular smooth muscle cells.FEBS Lett 1995; 368:239-242.
  • [80]Siow RC,Richards JP,Pedley KC,Leake DS,Mann GE.Vitamin C protects human vascular smooth muscle cells against apoptosis induced by moderately oxidized LDL containing high levels of lipid hydroperoxides.Arterioscler Thromb Vasc Biol 1999; 19:2387-2394.
  • [81]Anwar AA,Li FY,Leake DS,Ishii T,Mann GE,Siow RC.Induction of heme oxygenase 1 by moderately oxidized lowdensity lipoproteins in human vascular smooth muscle cells:role of mitogen-activated protein kinases and Nrf2.Free Radic Biol Med 2005; 39:227-236.
  • [82]Jenner AM,Ruiz JE,Dunster C,Halliwell B,Mann GE,Siow RC.Vitamin C protects against hypochlorous acid-induced glutathione depletion and DNA base and protein damage in human vascular smooth muscle cells.Arterioscler Thromb Vasc Biol 2002; 22:574-580.
  • [83]Ruiz E,Siow RC,Bartlett SR,Jenner AM,Sato H,Bannai S,Mann GE.Vitamin C inhibits diethylmaleate-induced L-cystine transport in human vascular smooth muscle cells.Free Radic Biol Med 2003; 34:103-110.
  • [84]Nagy L,Tontonoz P,Alvarez JG,Chen H,Evans RM.Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma.Cell 1998; 93:229-240.
  • [85]Nicholson AC.Expression of CD36 in macrophages and atherosclerosis:the role of lipid regulation of PPARgamma signaling.Trends Cardiovasc Med 2004; 14:8-12.
  • [86]Ishii T,Itoh K,Ruiz E,Leake DS,Unoki H,Yamamoto M,Mann GE.Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages:activation by oxidatively modified LDL and 4-hydroxynonenal.Circ Res 2004; 94:609-616.
  • [87]Leonarduzzi G,Robbesyn F,Poli G.Signaling kinases modulated by 4-hydroxynonenal.Free Radic Biol Med 2004; 37:1694-1702.
  • [88]Buckley B J,Marshall ZM,Whorton AR.Nitric oxide stimulates Nrf2 nuclear translocation in vascular endothelium.Biochem Biophys Res Commun 2003; 307:973-979.
  • [89]Chen XL,Varner SE,Rao AS,Grey JY,Thomas S,Cook CK,Wasserman MA,Medford RM,Jaiswal AK,Kunsch C.Laminar flow induction of antioxidant response element-mediated genes in endothelial cells.A novel anti-inflammatory mechanism.J Biol Chem 2003; 278:703-711.
  • [90]Foresti R,Hoque M,Bains S,Green CJ,Motterlini R.Haem and nitric oxide:synergism in the modulation of the endothelial haem oxygenase-1 pathway.Biochem J 2003; 372:381-390.
  • [91]Naughton P,Hoque M,Green CJ,Foresti R,Motterlini R.Interaction of heme with nitroxyl or nitric oxide amplifies heme oxygenase-1 induction:involvement of the transcription factor Nrf2.Cell Mol Biol (Noisy-le-grand) 2002; 48:885-894.
  • [92]Park EY,Kim SG.NO signaling in ARE-mediated gene expression.Methods Enzymol 2005; 396:341-349.
  • [93]Traub O,Berk BC.Laminar shear stress:mechanisms by which endothelial cells transduce an atheroprotective force.Arterioscler Thromb Vasc Biol 1998; 18:677-685.
  • [94]Gimbrone MA Jr,Topper JN,Nagel T,Anderson KR,GarciaCardena G.Endothelial dysfunction,hemodynamic forces,and atherogenesis.Ann NY Acad Sci 2000; 902:230-239.
  • [95]Fisher AB,Chien S,Barakat AI,Nerem RM.Endothelial cellular response to altered shear stress.Am J Physiol Lung Cell Mol Physiol 2001; 281:L529-L533.
  • [96]Cheng C,Tempel D,van Haperen R,van der Baan A,Grosveld F,Daemen MJ,Krams R,de Crom R.Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress.Circulation 2006; 113:2744-2753.
  • [97]Chien S.Mechanotransduction and endothelial cell homeostasis:the wisdom of the cell.Am J Physiol Heart Circ Physiol 2007; 292:H1209-H1224.
  • [98]Hosoya T,Maruyama A,Kang MI,Kawatani Y,Shibata T,Uchida K,Warabi E,Noguchi N,Itoh K,Yamamoto M.Differential responses of the Nrf2-Keapl system to laminar and oscillatory shear stresses in endothelial cells.J Biol Chem 2005;280:27244-27250.
  • [99]Warabi E,Takabe W,Minami T,Inoue K,Itoh K,Yamamoto M,Ishii T,Kodama T,Noguchi N.Shear stress stabilizes NFE2-related factor 2 and induces antioxidant genes in endothelial cells:Role of reactive oxygen/nitrogen species.Free Radic Biol Med 2007; 42:260-269.
  • [100]Cai H,McNally JS,Weber M,Harrison DG.Oscillatory shear stress upregulation of endothelial nitric oxide synthase requires intracellular hydrogen peroxide and CaMKII.J Mol Cell Cardiol 2004; 37:121-125.
  • [101]Siow RCM,Li FYI,Rowlands DJ,de Winter P,Mann GE.Cardiovascular targets for estrogens and phytoestrogens:transcriptional regulation of nitric oxide synthase and antioxidant defense genes.Free Radic Biol Med 2007; 42:909-925.
  • [102]Barber A,Robson SC,Myatt L,Bulmer JN,Lyall F.Heme oxygenase expression in human placenta and placental bed:reduced expression of placenta endothelial HO-2 in preeclampsia and fetal growth restriction.FASEB J 2001; 15:1158-1168.
  • [103]Abdulhadi NH.Glucose 6 phosphate dehydrogenase (G6PD)deficiency is a possible risk factor for the development of preeclampsia.Med Hypotheses 2004; 62:780-782.
  • [104]Leopold JA,Cap A,Scribner AW,Stanton RC,Loscalzo J.Glucose 6-phosphate dehydrogenase deficiency promotes endothelial oxidant stress and decreases endothelial nitric oxide bioavailability.FASEB J 2001; 15:1771-1773.
  • [105]Leopold JA,Zhang YY,Scribner AW,Stanton RC,Loscalzo J.Glucose-6-phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide.Arterioscler Thromb Vasc Biol 2003; 23:411-417.
  • [106]Watson AJ,Siow RCM,Mann GE.Redox status and antioxidant gene expression in fetal vascular endothelial cells from normal and pre-eclamptic pregnancies.Microcirculation 2005;12:673,doi:10.1080/10739680500301730-P33.
  • [107]Niehueser-Saran J,Siow RCM,Mann GE.Impaired superoxide anion production and antioxidant gene expression in pre-eclamptic vascular smooth muscle cells.Microcirculation 2005; 12:685,doi:10.1080/10739680500301730-P63
  • [108]Afzal-Ahmed I,Mann GE,Shennan AH,Poston L,Naftalin RJ.Pre-eclampsia inactivates glucose 6-phosphate dehydrogenase and impairs the redox status of erythrocytes and fetal endothelial cells.Free Radic Biol Med 2007; in press.doi.org/10.1016/j.freeradbiomed.2007.02.032
WanfangData CO.,Ltd All Rights Reserved
About WanfangData | Contact US
Healthcare Department, Fuxing Road NO.15, Haidian District Beijing, 100038 P.R.China
Tel:+86-010-58882616 Fax:+86-010-58882615 Email:yiyao@wanfangdata.com.cn