Neural mechanism of rapid eye movement sleep generation: Cessation of locus coeruleus neurons is a necessity

( views:161, downloads:0 )
Dinesh Pal()
Vibha Madan()
Birendra Nath Mallick()
Journal Title:
Volume 57, Issue 04, 2005
Key Word:
GABA;locus coeruleus;Na-K ATPase;norepinephrine;REM sleep generating mechanism;REM sleep loss

Abstract: Two types of neurons are involved in the regulation of rapid eye movement (REM) sleep, the REM-ON and the REM-OFF neurons: As the name suggests, the REM-OFF neurons cease firing during REM sleep and they are norepinephrinergic. It has been shown that cessation of these neurons is a pre-requisite for the generation of REM sleep and GABA shuts them off. Further, if these neurons do not shut off, there is increased levels of norepinephrine in the brain and loss of REM sleep. The REM sleep deprivation induced increase in norepinephrine is responsible for mediating at least REM sleep loss induced increase in Na+-K+ ATPase activity,which is likely to be the primary factor for causing REM sleep deprivation induced effects.

  • [1]Aserinsky E, Kleitman N. Regularly occurring periods of eye motility and concomitant phenomena during sleep. Science 1953;118: 273-274.
  • [2]Siegel JM, Manger PR, Nienhuis R, Fahringer HM, Pettigrew JD. The echidna Tachyglossus aculeatus combines REM and non-REM aspects in a single sleep state: implications for the evolution of sleep. J Neurosci 1996; 16: 3500-3506.
  • [3]Siegel JM, Manger PR, Nienhuis R, Fahringer HM, Pettigrew JD. The platypus has REM sleep. Sleep Res 1997; 26: 177.
  • [4]Frank MG. Phylogeny and evolution of rapid eye movement (REM) sleep. In: Mallick BN, Inoue S. eds. Rapid Eye Movement Sleep. New York: Marcel and Dekker Inc., 1999, 17-38.
  • [5]Mallick BN, Adya HVA, Thankachan S. REM sleep deprivation alters factors affecting neuronal excitability: Role of norepinephrine and its possible mechanism of action. In: Mallick BN, Inoue S. eds. Rapid Eye Movement Sleep. New York: Marcel and Dekker Inc., 1999, 338-354.
  • [6]Vogel GW. A review of REM sleep deprivation. Arch Gen Psychiat 1975; 32: 749-761.
  • [7]Gulyani S, Majumdar S, Mallick BN. Rapid eye movement sleep and significance of its deprivation studies? A review. Sleep and Hypnosis 2000; 2: 49-68.
  • [8]Rechtschaffen A, Bergmann BM, Everson CA, Kushida CA,Gilliland MA. Sleep deprivation in the rat: X. Integration and discussion of the findings. Sleep 2002; 25: 68-87.
  • [9]Singh S, Mallick BN. Mild electrical stimulation of pontine tegmentum around locus coeruleus reduces rapid eye movement sleep. Neurosci Res 1996; 24: 227-235.
  • [10]Kaur S, Saxena RN, Mallick BN. GABA in locus coeruleus regulates spontaneous rapid eye movement sleep by acting on GABA-A receptors in freely moving rats. Neurosci Lett 1997;223: 105-108.
  • [11]Kaur S, Panchal M, Faisal M, Malan V, Nangia P, Mallick BN.Long term blocking of GABA-A receptor in locus coeruleus by bilateral microinfusion of picrotoxin reduced rapid eye movement sleep and increased brain Na-K ATPase activity in freelymoving normally behaving rats. Behav Brain Res 2004; 151:185-190.
  • [12]Siegel JM. Pontomedullary interactions in the generation of REM sleep. In: McGinty DJ, Drucker-Colin R, Morrison A,Permeggiani PL. eds. Brain Mechanism of Sleep. New York:Raven Press, 1985, 157-174.
  • [13]Siegel JM. Brainstem mechanism generating REM sleep. In:Kryger MH, Roth T, Dement WC. eds. Principles and Practice of Sleep Medicine. WB Saunders Company, 1989, 104-120.
  • [14]Aston-Jones G, Bloom FE. Activity of norepinephrine containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1981; 1: 876-886.
  • [15]Jacobs BL. Single unit activity of locus coeruleus neurons in the behaving animals. Prog Neurobiol 1986; 27: 183-194.
  • [16]El Mansari M, Sakai M, Jouvet M. Unitary characteristics of presumptive cholinergic tegmental neurons during sleep-waking cycle in freely moving cats. Exp Brain Res 1989; 76: 519-529.
  • [17]Sakai K, Sastre JP, Kanamori N, Jouvet M. State-specific neurons in the ponto-medullary reticular formation with special reference to the postural atonia during paradoxical sleep in the cat. In: Pompeiano O, Ajmone V, Marsan C. eds. Brain Mechanisms and Percptual Awareness. New York: Raven Press, 1981,405-429.
  • [18]Parent A, Poitras D. The origin and distribution of catecholaminergic axon terminals in the cerebral cortex of the turtle (Chrysemys picta). Brain Res 1974; 78: 345-358.
  • [19]Tohyama M, Maeda T, Hashimoto J, Shrestha GR, Tamura O.Comparative anatomy of the locus coeruleus. Ⅰ. Organisation and:ascending projections of the catecholamine containing neurons in the pontine regions of the bird. J Himforsch 1974b; 15:319-330.
  • [20]Tohyama M, Maeda T, Shimizu N. Comparative anatomy of the locus coeruleus Ⅱ. Organization and projection of the catecholamine containing neurons in the upper rhomboencephalon of the frog Rana catesbiana. J Himforsch 1976; 16: 81-89.
  • [21]Singewald N, Philippu A. Release of neurotransmiters in the locus coeruleus. Prog Neurobiol 1998; 56: 237-267.
  • [22]Bjorklund A, Skagerberg G. Descending monoaminergic projections to the spinal cord. In: Sjolund B, Bjorland A. eds. Brain Stem Control of Spinal Mechanism. Amsterdam: Elsevier, 1982,55-58.
  • [23]Lyons WE, Fritschy JM, Grazanna R. The noradrenergic neurotoxin DSP-4 eliminates the coerulospinal projections but spares projections of the A5 and A7 groups to the ventral horn of the spinal cord. J Neurosci 1989; 9: 1481-1489.
  • [24]Fritschy JM, Grzanna R. Distribution of locus ceruleous axons within the rat brainstem demonstrated by Phaseolus vulgaris leucoagglutinin anterograde racing in combination with dopamine-β-hydroxylase immunofluorescence. J Comp Neurol 1990;293: 616-631.
  • [25]Luppi PH, Aston-Jones G, Akaoka H, Chouvet G, Jouvet M.Afferent projections to the rat locus coeruleus demonstrated by retrograde and anterograde tracing with cholera-toxin B subunit and Phaseolus Vulgaris leucoagglutinin. Neuroscience 1995; 65:119-160.
  • [26]Jones B. Immunohistochemical study of choline acetyltransferaseimmunoreactive processes and cells innervating the pontomedullary reticular formation in the rat. J Comp Neurol 1990; 295:485-514.
  • [27]Ennis M, Aston-Jones G. GABA-mediated inhibition of locus coeruleus from the dorsomedial rostral medulla. J Neurosci 1989;9: 2973-2981.
  • [28]Aston-Jones G, Shipley MT, Chouvet G, Ennis M, Bockstaele EV, Pieribone V, Shiekhattar R, Akaoka H, Drolet G, Astier B.Afferent regulation of locus coeruleus neurons: anatomy, physiology and pharmacology. Prog Brain Res 1991; 88: 47-75.
  • [29]Iijima K, Ohtomo K. Immunohistochemical study using GABA antiserum for demonstration of inhibitory neurons in the rat locus coeruleus. Am J Anat 1988; 181: 183-194.
  • [30]Sherin JE, Elmquist JK, Torrealba F, Saper CB. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 1998; 18: 4705-4721.
  • [31]Steininger TL, Gong H, McGinty D, Szymusiak R. Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups. J Comp Neurol 2001; 429: 638-653.
  • [32]Jones BE, Harper ST, Halaris AE. Effects of locus coeruleus lesions upon cerebral monoamine content, sleep wakefulness states and the response to amphetamine in the cat. Brain Res 1977; 124:473-496
  • [33]Henley K, Morrison AR. A re-evaluation of the effects of lesions of the pontine tegmentum and locus coeruleus on phenomena of paradoxical sleep in the cat. Acta Neurobiol Exp (Warsz) 1974;
  • [34]:215-23234.Sastre JP, Sakai K, Jouvet M. Bilateral lesions of the dorsolateral pontine tegmentum. Ⅱ. Effect upon muscle atonia. Sleep Res 1978; 7: 44.
  • [35]Maeda T, Pin C, Salvert D, Ligier M, Jouvet M et. Les neurones contenant des catecholamines du tegmentum pontique et leurs voies de projections chez le chat. Brain Res 1973; 57:119-152.
  • [36]Petitjean F, Sakai K, Blondaux Ch, Jouvet M. Hypersomnie par lesion isthmique chez le chat. Ⅱ. Etude neurophysiologique et pharmacologique. Brain Res 1975; 88: 439-453.
  • [37]Hobson JA, McCarley RW, Wyzinski PW. Sleep cycle oscillation: Reciprocal discharge by two brainstem neuronal groups. Science 1975; 189: 55-58.
  • [38]Reiner PB. Correlational analysis of central noradrenergic neuronal activity and sympathatic tone in behaving cats. Brain Res 1986; 378: 86-96.
  • [39]Cespuglio R, Gomez ME, Faradji H, Jouvet M. Alterations in the sleep-waking cycle induced by cooling of the locus coeruleus area. Electroencephalogr Clin Neurophysiol 1982; 54: 570-578.
  • [40]Porkka-Heiskanen T, Smith SE, Taira T, Urban JH, Levine JE,Turek FW, Stenberg D. Noradrenergic activity in rat brain during rapid eye movement sleep deprivation and rebound sleep. Am J Physiol 1995; 268: R1456-R1463.
  • [41]Bergmann BM, Everson CA, Kushida CA, Fang VS, Leitch CA,Schoeller DA, Rechtshaffen A. Sleep deprivation in the rat: Ⅴ.Energy use and mediation. Sleep 1989; 12: 31-41.
  • [42]Sinha AK, Ciaranello RD, Dement WC, Barchas JD. Tyrosine hydroxylase activity in rat brain following REM sleep deprivation. J Neurochem 1973; 20: 1289-1290.
  • [43]Basheer R, Magner M, McCarley RW, Shiromani PJ. REM sleep deprivation increases the levels of tyrosine hydroxylase and norepinephrine transporter mRNA in the locus coeruleus.Brain Res Mol Brain Res 1998; 57: 235-240.
  • [44]Thakkar M, Mallick BN. Effect of rapid eye movement sleep deprivation on rat brain monoamine oxidases. Neuroscience 1993;55: 677-683.
  • [45]Majumdar S, Mallick BN. Increased levels of tyrosine hydroxylase and glutamic acid decarboxylase in locus coeruleus neurons after rapid eye movement sleep deprivation in rats. Neurosci Lett 2003; 338: 193-196.
  • [46]Shouse MN, Staba RJ, Saquib SF, Farber PR. Monoamines and sleep: microdialysis findings in pons and amygdyla. Brain Res 2000; 860: 181-189.
  • [47]Mallick BN, Siegel JM, Fahringer H. Changes in pontine unit activity with REM sleep deprivation. Brain Res 1989; 515: 94-98.
  • [48]Mallick BN, Kaur S, Saxena RN. Interactions between cholinergic and GABAergic neurotransmitters in and around the locus coeruleus for the induction and maintenance of rapid eye movement sleep in rats. Neuroscience 2001; 104: 467-485.
  • [49]U'Prichard DC, Greenberg DA, Sheehan P, Snyder SH. Regional distribution of alpha noradrenergic receptor binding in calf brain.Brain Res 1977; 138: 151-158.
  • [50]Palacois JM, Kuhar MJ. Beta-adrenergic-receptor localization by light microscopic autoradiography. Science 1980; 208: 1378-1380.
  • [51]Hilakivi I. The role of beta and alpha-adrenoceptors in the regulation of the sleep-waking cycle in the cats. Brain Res 1983; 277:109-118.
  • [52]Lanfumey L, Dugovic C, Adrien J. Beta 1 and beta 2 adrenergic receptors: their role in the regulation of paradoxical sleep in the rat. Electroencephalogr Clin Neurophysiol 1985; 60: 558-567.
  • [53]Hilakivi I, Leppavuori A, Putkonen PT. Prazosin increases paradoxical sleep. Eur J Pharmacol 1980; 65: 417-420.
  • [54]Pellejero T, Monti JM, Baglietto J, Jouvet M. Effects of methoxamine and alpha-adrenoceptor antagonists, prazosin and yohimbine, on the sleep-waking cycle of the rat. Sleep 1984; 7:365-372.
  • [55]Kleinlogel H. Effects of selective alpha1 adrenoceptor blocker prazosin on EEG sleep and waking stages in the rat.Neuropsychobiology 1989; 21: 100-103.
  • [56]Makela JP, Hilakivi I. Effect of alpha-adrenoceptor blockade on sleep and wakefulness in the rat. Pharmacol Biochem Behav 1986; 24: 613-616.
  • [57]Kleinlogel H, Scholtysik G, Sayers V. Effects of clonidine and BS 100-141 on the EEG sleep patterns in rats. Eur J Pharmacol 1975; 33: 159-163.
  • [58]Leppavuori A, Putkonenm PTS. Alpha- adrenoceptive influences on the control of the sleep-waking cycle in the cat. Brain Res 1980; 193: 95-116.
  • [59]Gallard JM, Kafi S. Involvement of pre- and postsynaptic receptors in catecholaminergic control of paradoxical sleep in man.Eur J Clin Pharmacol 1979; 15: 83-89.
  • [60]Cirelli C, Tononi G, Pompeiano M, Pompeiano O, Gennari A.Modulation of desynchronized sleep through microinjection of alpha- 1 adrenergic agonists and antagonists in the dorsal pontine tegmentum of the cat. Eur J Physiol 1992; 422: 273-279.
  • [61]Tononi G, Pompeiano M, Cirelli C. Effects of local pontine injection of noradrenergic agents on desynchronized sleep of the cat. Prog Brain Res 1991; 88: 545-553.
  • [62]Tononi G, Pompeiano M, Pompeiano O. Modulation of desynchronized sleep through microinjection of beta-adrenergic agonists and antagonists in the dorsolateral pontine tegmentum of the cat. Pflugers Arch 1989; 415: 142-149.
  • [63]Berridge CW, Foote SL. Enhancement of behavioral and electroencephalographic indices of waking following stimulation of noradrenergic beta-receptors within the medial septal region of the basal forebrain. J Neurosci 1996; 16: 6999-7009.
  • [64]Crochet S, Sakai K. Alpha-2 adrenoceptor mediated paradoxical (REM) sleep inhibition in the cat. Neuroreport 1999; 10: 2199-2204.
  • [65]Mallick BN, Majumdar S, Faisal M, Yadav V, Madan V, Pal D.Role of norepinephrine in the regulation of rapid eye movement sleep. J Biosci 2002; 27: 539-551.
  • [66]Mallick BN, Singh S, Pal D. Role of alpha and beta adrenoceptors in locus coeruleus stimulation-induced reduction in rapid eye movement sleep in freely moving rats. Behav Brain Res 2005;158: 9-21.
  • [67]Thankachan S, Islam F, Mallick BN. Role of wake inducing brain stem area on rapid eye movement sleep regulation in freely moving cats. Brain Res Bull 2001; 55: 43-49.
  • [68]Mallick BN, Thankachan S, Kaur S, Pal D. Role of wakefulness area in the brainstem reticular formation in regulating rapid eye movement sleep. In: Lader M, Cardinali DP, Pandi-Perumal SR.eds. Sleep and Sleep Disorders: A Neuropsychopharmacological Approach. Landes Bioscience, 2005, 250-256.
  • [69]Huttenlocher PR. Evoked and spontaneous activity in single units of medial brainstem during natural sleep and waking. J Neurophysiol 1961; 24:451-468.
  • [70]Tanaka DJ. Labeled NA release from rat cerebral cortex following electrical stimulation of LC. Brain Res 1976; 106: 384-389.
  • [71]Vanderwolf CH, Baker GB. The role of brain noradrenaline in cortical activation and behavior: a study of lesions of the locus coeruleus, medial thalamus and hippocampus-neocortex and of muscarinic blockade in the rat. Behav Brain Res 1996; 78: 225-234.
  • [72]Thakkar M, Portas C, McCarley RW. Chronic low-amplitude electrical stimulation of the laterodorsal tegmental nucleus of freely moving cats increases REM sleep. Brain Res 1996; 723:223-227.
  • [73]Morales FR, Engelhardt FK, Soja PJ, Perede AE, Chase MH.Motoneuron properties during motor inhibition produced by microinjection of carbachol into pontine reticular formation of the decerebrate cat. J Neurophysiol 1987; 57:1118-1129.
  • [74]Lai YY, Siegel JM. Muscle tone suppression and stepping produced by stimulation of midbrain and rostral pontine reticular formation. J Neurosci 1990; 10: 2727-2734.
  • [75]Bonvallet M, Bloch V. Bulbar control of cortical arousal. Science 1961; 133: 1133-1134.
  • [76]Mancia MG, Grantyn NA, Broggi G, Margnelli M. Synaptic linkages between mesencephalic and bulbopontine reticular structures as revealed by intracellular recording. Brain Res 1971; 33:491-494.
  • [77]Kasamatsu T. Maintained and evoked unit activity in the mesecephalic reticular formation of the freely behaving cat. Exp Neurol 1970; 28: 450-470.
  • [78]Favale E, Loeb C, Rossi GF, Sacco G. EEG synchronization and behavioral signs of sleep following low frequency stimulation of the brain stem reticular formation. Arch Ital Biol 1961; 99: 1-22.
  • [79]Mallick BN, Chhina GS, Sundaram KR, Singh B, Kumar VM.Activity of preoptic neurons during synchronization and desynchronization. Exp Neurol 1983; 81: 586-597.
  • [80]Kaitin KI. Preoptic area unit activity during sleep and wakefulness in the cat. Exp Neurol 1984; 83: 347-357.
  • [81]McGinty DJ, Szymusiak R. Neuroanl unit activity patterns in behaving animals: brain stem and limbic system. Annu Rev Psychol 1988; 39: 135-168.
  • [82]Pal D, Mallick BN. GABA in pedunculo pontine tegmentum regulates spontaneous rapid eye movement sleep by acting on GABA-A receptors in freely moving rats. Neurosci Lett 2004;365: 200-204.
  • [83]Ford B, Holmes CJ, Mainville L, Jones BE. GABA-ergic neurons in the rat pontomesencephalic tegmentum: Codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J Comp Neurol 1995; 363: 177-196.
  • [84]Sakai K. Executive mechanisms of paradoxical sleep. Arch Ital Biol 1988; 126: 239-257.
  • [85]Williams JA, Reiner PB. Noradrenaline hyperpolarizes identified rat mesopontine cholinergic neurons in vitro. J Neurosci 1993; 13: 3878-3883.
  • [86]Egan TM, North RA. Action of acetylcholine and nicotine on rat locus coeruleus neurons in vitro. Neuroscience 1986; 19: 565-571.
  • [87]Alam MN, Kumari S, Mallick BN. Role of GABA in acetylcholine induced locus coeruleus mediated increase in REM sleep.Sleep Res 1993; 22: 541.
  • [88]Mallick BN, Kaur S, Jha SK, Siegel JM. Possible role of GABA in the regulation of REM sleep with special reference to REMOFF neurons. In: Mallick BN, Inoue S. eds. Rapid Eye Movement Sleep. Marcel and Dekker Inc., 1999b, 153-166.
  • [89]Olpe HR, Steinmann MW, Hall RG, Brugger F, Pozza MF.GABA-A and GABA-B receptors in locus coeruleus: effects of blockers. EurJ Pharmacol 1988; 149: 183-185.
  • [90]Luque JM, Erat R, Kettler R, Prada MD, Richards JG. Radioautographic evidence that the GABA receptor antagonist SR 95331 is a substrate inhibitor of MAO-A in the rat and human locus coeruleus. Eur J Neurosci 1994; 6: 1038-1049.
  • [91]Nitz D, Siegel JM. GABA release in the locus coeruleus as a function of sleep/wake state. Neuroscience 1997; 78: 795-801.
  • [92]Baghdoyan HA, Rodrigo-Angulo ML, McCarley RW, Hobson JA. Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brainstem regions. Brain Res 1984; 306: 39-52.
  • [93]Gillin JC, Sitaram N, Janowsky D, Risch C, Huey L, Storch FI.Cholinergic mechanisms in REM sleep. In: Wauquier A, Gaillard JM, Monti JM, Radulovacki M. eds. Sleep: Neurotransmitters and Neuromodulators. New York: Raven Press, 1985, 153-163.
  • [94]Sakai K, Koyama Y. Are there cholinergic and non-cholinergic paradoxical sleep-on neurones in the pons. Neuroreport 1996;2449-2453.
  • [95]Higo S, Ito K, Fuchs D, McCarley RW. Anatomical interconnections of the pedunculopontine tegmental nucleus and the nucleus prepositus hypoglossi in the cat. Brain Res 1990; 536:79-85.
  • [96]Kaur S, Saxena RN, Mallick BN. GABAergic neurones in prepositus hypoglossi regulate REM sleep by its action on locus coeruleus in freely moving rats. Synapse 2001; 42: 141-150.
  • [97]Cirelli C, Pompeiano M, Tononi G. Neuronal gene expression in the waking state: a role for the locus coeruleus. Science 1996;274:1211-1215.
  • [98]Cirelli C. How sleep deprivation affects gene expression in the brain: a review of recent findings. J Appl Physiol 2002; 92:394-400.
  • [99]Mallick BN, Fahringer HM, Wu MF, Siegel JM. REM sleep deprivation reduces auditory evoked inhibition of dorsolateral pontine neurons. Brain Res 1991; 552: 333-337.
  • [100]Gulyani S, Mallick BN. Effect of rapid eye movement sleep deprivation on rat brain Na-K ATPase activity. J Sleep Res 1993; 2: 45-50.
  • [101]Gulyani S, Mallick BN. Possible mechanism of REM sleep deprivation induced increase in Na-K ATPase activity. Neuroscience 1995; 64: 255-260.
  • [102]Mallick BN, Adya HVA. Norepinephrine induced alphaadrenoceptor mediated increase in rat brain Na-K ATPase activity is dependent on calcium ion. Neurochemistry Int 1999;34: 499-507.
  • [103]Adya HVA, Mallick BN. Uncompetitive stimulation of rat brain Na-K ATPase activity by rapid eye movement sleep deprivation. Neurochem Int 2000; 36: 249-253.
  • [104]Mallick BN, Adya HVA, Faisal M. Norepinephrine-stimulated increase in Na+, K+-ATPase activity in the rat brain is mediated through alphalA-adrenoceptor possibly by dephosphorylation of the enzyme. J Neurochem 2000; 74: 1574-1578.
WanfangData CO.,Ltd All Rights Reserved
About WanfangData | Contact US
Healthcare Department, Fuxing Road NO.15, Haidian District Beijing, 100038 P.R.China
Tel:+86-010-58882616 Fax:+86-010-58882615