Optical detection of single molecules in living cells

( views:109, downloads:0 )
Author:
XU Ning()
XU Ming()
ZHANG You-yi()
Journal Title:
ACTA PHYSIOLOGICA SINICA
Issue:
Volume 57, Issue 03, 2005
DOI:
Key Word:
single molecules;optical detection;living cell

Abstract: Single molecule detection is a technology of studying biomolecules with high spatial and temporal resolution. By exploiting recent technical advances, we are able to observe, detect, even manipulate individual molecules and study their conformational changes and dynamic behaviors. New information can be obtained from the single molecule research, which is otherwise hidden or averaged out.In recent years, the development of single molecule detection techniques has opened up a new era of life science. In this review, we introduce the advances of the techniques for detecting single molecules in cell biology and review the development of single molecule detection in living cells.

  • [1]Harada Y, Funatsu T, Murakami K, Nonoyama Y, Ishihama A,Yanagida T. Single molecule imaging of RNA polymerase-DNA interactions in real time. Biophys J 1999; 76: 709-715.
  • [2]Lu HP, Xun L, Xie XS. Single-molecule enzymatic dynamics.Science 1998; 282: 1877-1882.
  • [3]Kitamura K, Tokunaga M, Iwane AH, Yanagida T. A single myosin head moves along an actin filament with regular steps of 5.3nanometres. Nature 1999; 397: 129-134.
  • [4]Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell 1998; 9: 351-366.
  • [5]Sako Y, Minoguchi S, Yanagida T. Single molecule imaging of EGFR signal transduction on the living cell surface. Nature Cell Biol2000; 2: 168-172.
  • [7]Xie XS, Trautman JK. Optical studies of single molecules at room temperature. Ann Rev Phys Chem 1998; 49:441-480.
  • [8]Weiss S. Fluorescence spectroscopy of single biomolecules. Science 1999; 283: 1676-1683.
  • [9]Gimzewski JK, Joachim C. Nanoscale science of single molecules using local probes. Science 1999; 283: 1683-1688.
  • [10]Miyawaki, A. Green fluorescent protein-like proteins in reef Anthozoa animals. Cell Struct Funct 2002; 27: 343-327.
  • [11]Nakano A. Spinning-disk confocal microscopy-a cutting-edge tool for imaging of membrane. Cell Struct Funct 2002; 27: 349-355.
  • [12]Sako Y, Uyemura T. Total internal reflection fluorescence microscopy for single-molecule imaging in living cells. Cell Struct Funct 2002; 27: 357-365.
  • [13]Hiraoka Y, Shimi T, Haraguchi T. Multispectral imaging fluorescence microscopy for living cells. Cell Struct Funct 2002; 27: 367-374.
  • [14]Tsien RY. The green fluorescent protein. Annu Rev Biochem1998; 67: 509-544.
  • [15]Wang SY, Song Y, Xu M, Hao TP, Han QD, Zhang YY. Three a1-adrenergic receptor subtypes redistribution in the stably transfected HEK 293A cells upon agonist stimulation. Acta Physiol Sin (生理学报) 2005; 57(4) (in press).
  • [16]Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG,Markelov ML and Lukyanov SA. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnol 1999;17: 969-973.
  • [17]Baird GS, Zacharias DA, Tsien RY. Biochemistry, mutagenesis,and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 2000; 97:11984-11989.
  • [18]Griffin BA, Adams SR, Tsien RY. Specific covalent labeling of recombinant protein molecules inside living cells. Science 1998;281: 269-272.
  • [19]Hanson MR, Kohler RH. GFP imaging: methodology and application to investigate cellular compartmentation in plants. J Exp Bot 2001; 52: 529-539.
  • [20]Murakoshi H, Iino R, Kobayashi T, Fujiwara T, Ohshima C,Yoshimura A, Kusumi A. Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sc USA 2004; 101:7317-7322.
  • [21]Llopis J, Westin S, Ricote M, Wang Z, Cho CY, Kurokawa R,Mullen TM, Rose DW, Rosenfeld MG, Tsien RY, Glass CK.Ligand-dependent interactions of coactivators steroid receptor coactivator- 1 and peroxisome proliferator-activated receptor binding protein with nuclear hormone receptors can be imaged in live cells and are required for transcription. Proc Natl Acad Sci USA 2000; 97: 4363-4368.
  • [22]Mahajan NP, Linder K, Berry G, Gordon GW, Heim R, Herman B. Bcl-2 and bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer.Nat Biotechnol 1998; 16: 547-552.
  • [23]Ng T, Squire A, Hansra G, Bornancin F, Prevostel C, Hanby A,Harris W, Barnes D, Schmidt S, Mellor H, Bastiaens PI, Parker PJ. Imaging protein kinase C activation in cells. Science 1999; 283:2085-2089.
  • [24]Nagai Y, Miyazaki M, Aoki R, Zama T, Inouye S, Hirose K,Iino M, Hagiwara M. A fluorescent indicator for visualizing cAMP induced phosphorylation in vivo. Nat Biotechnol 2000;18: 313-316.
  • [25]Emmanouilidou E, Teschemacher AG, Pouli AE, Nicholls LI,Seward EP, Rutter GA. Imaging Ca2+ concentration changes at the secretory vesicle surface with a recombinant targeted cameleon.Curr Biol 1999; 9: 915-918.
  • [26]Bastiaens PI, van Hoek A, Benen JA, Brochon JC, Visser AJ.Conformational dynamics and intersubunit energy transfer in wild-type and mutant lipoamide dehydrogenase from Azotobacter vinelandii: a multidimensional time-resolved polarized fluorescence study. Biophys J 1992; 63: 839-853.
  • [27]Runnels LW, Scarlata SF. Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys J 1995;69: 1569-1583.
  • [28]Blackman SM, Piston DW, Beth AH. Oligomeric state of human erythrocyte band 3 measured by fluorescence resonance energy homotransfer. Biophys J 1998; 75:1117-1130.
  • [29]Varma R, Mayor S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 1998; 394: 798-801.
  • [30]Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA,Ikura M, Tsien RY. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 1997; 388: 882-887.
  • [31]Ting AY, Kain KH, Klemke RL, Tsien RY. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc Natl Acad Sci USA 2001; 98: 15003-15008.
  • [32]Axelrod D, Burghardt TP, Thompson NL. Total internal reflection fluorescence. Annu Rev Biophys Bioeng 1984; 13: 247-268.
  • [33]Ishijima A, Yanagida T. Single molecule nanobioscience. Trends Biochem Sci 2001; 26:438 444.
  • [34]Sako Y, Uyemura T. Total internal reflection fluorescence microscopy for single-molecule imaging in living cells. Cell Struct Funct 2002; 27: 357-365.
  • [35]Tokunaga M, Kitamura K, Saito K, Iwane AH, Yanagida T.Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem Biophys Res Commun 1997; 235: 47-53.
  • [36]Berland KM, So PT, Gratton E. Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys J 1995; 68: 694-701.
  • [37]Politz JC, Browne ES, Wolf DE, Pederson T. Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc Natl Acad Sci USA 1998; 95: 6043-6048.
  • [38]Betzig E, Chichester RJ, Lanni F, Taylor DL. Near-field fluorescence imaging ofcytoskeletal actin. Bioimaging 1993; 1: 129-135.
  • [39]Betzig E, Chichester RJ. Single molecules observed by near-field scanning optical microscopy. Science 1993; 262: 1422-1425.
  • [40]Xie XS, Dunn RC. Probing single molecule dynamics. Science 1994; 265: 361-364.
  • [41]Seisenberger G, Ried MU, Endress T, Buning H, Hallek M,Brauchle C. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 2001; 294: 1929-1932.
  • [42]Lakadamyali M, Rust MJ, Babcock HP, Zhuang X. Visualizing infection of individual influenza viruses. Proc Natl Acad Sci USA 2003; 100: 9280-9285.
  • [43]Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 1995;374: 555-559.
  • [44]Weiss S. Fluorescence spectroscopy of single biomolecules. Science 1999; 283: 1676-1683.
  • [45]Sako Y, Minoghchi S, Yanagida T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nature Cell Biology 2000; 2:168-172
  • [46]Iino R, Koyama I, Kusumi A. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophysical J 2001; 80: 2667-2677.
  • [47]Schutza GJ, Pastushenkoa PV, Grubera HJ, Knausb HG, Pragl B, Schindlera H. 3D imaging of individual ion channels in live cells at 40 nm resolution. Single Mol 2000; 1: 25-31.
  • [48]Harms GS, Cognet L, Lommerse PH, Blab GA, Kahr H,Gamsjager R, Spaink HP, Soldatov NM, Romanin C, Schmidt T.Single-molecule imaging of L-Type Ca2+ channels in live cells.Biophys J 2001; 81: 2639-2646.
  • [49]Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A.Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 2003; 302: 442-446.
  • [50]Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechno12003; 21:47-51.
WanfangData CO.,Ltd All Rights Reserved
About WanfangData | Contact US
Healthcare Department, Fuxing Road NO.15, Haidian District Beijing, 100038 P.R.China
Tel:+86-010-58882616 Fax:+86-010-58882615 Email:yiyao@wanfangdata.com.cn