Distinct β-adrenergic receptor subtype signaling in the heart and their pathophysiological relevance

( views:135, downloads:0 )
Author:
()
()
()
Journal Title:
ACTA PHYSIOLOGICA SINICA
Issue:
Volume 56, Issue 01, 2004
DOI:
Key Word:
β-adrenergic receptors;heart;signal transduction

Abstract: In the heart, stimulation of β-adrenergic receptors (βAR) serves as the most powerful means to increase cardiac contractility and relaxation in response to stress or a "fight-or-flight" situation. However, sustained β-adrenergic stimulation promotes pathological cardiac remodeling such as myocyte hypertrophy, apoptosis and necrosis, thus contributing to the pathogenesis of chronic heart failure. Over the past decade, compelling evidence has demonstrated that coexisting cardiac βAR subtypes, mainly β1AR and β2AR, activate markedly different signaling cascades. As a result, acute β1AR stimulation activates the Gs-adenylyl cyclase-cAMP-PKA signaling that can broadcast throughout the cell, whereas β2AR-evoked cAMP signaling is spatially and functionally compartmentalized, due to concurrent Gi activation. Chronic stimulation of β1AR and β2AR elicits opposing effects on the fate of cardiomyocytes: β1AR induces hypertrophy and apoptosis; but β2AR promotes cell survival. The cardiac protective effect of β2AR is mediated by a signaling pathway sequentially involving Gi, Gβγ, PI3K and Akt. Unexpectedly,β1AR-induced myocyte hypertrophy and apoptosis are independent of the classic cAMP/PKA pathway, but require activation of Ca2+/calmodulin-dependent kinase Ⅱ (CaMK Ⅱ ). The outcomes of cardiac-specific transgenic overexpression of either βAR subtype in mice have reinforced the fundamentally different functional roles of these βAR subtypes in governing cardiac remodeling and performance. These new insights regarding βAR subtype stimulation not only provide clues as to cellular and molecular mechanisms underlying the beneficial effects of βAR blockers in patients with chronic heart failure, but also delineate rationale for combining selective β1AR blockade with moderate β2AR activation as a potential novel therapy for the treatment of chronic heart failure.

  • [1]Braunwald E, Bristow MR. Congestive heart failure: fifty years of progress. Circulation 2000; 102:14-23.
  • [2]Bristow MR. Mechanistic and clinical rationales for using β-blockers in heart failure. J Card Fail 2000; 6:8-14.
  • [3]Xiao RP. β-adrenergic signaling in the heart: dual coupling of the β2-adrenergic receptor to Gs and Gi proteins. Sci STKE 2001;104.:RE15.
  • [4]Xiao RP, Lakatta EG. β1-adrenoceptor stimulation and β2-adrenoceptor stimulation differ in their effects on contraction,cytosolic Ca2+, and Ca2+ current in single rat ventricular cells. Circ Res 1993;73:286-300.
  • [5]Xiao RP, Hohl C, Altschuld R, Jones L, Livingston B, Ziman B, Tantini B, Lakatta EG et al. β2-adrenergic receptorstimulated increase in cAMP in rat heart cells is not coupled to changes in Ca2+ dynamics, contractility, or phospholamban phosphorylation. J Biol Chem 1994;269:19151-19156.
  • [6]Kuznetsov V, Pak E, Robinson RB, Steinberg SF. β2-adrenergic receptor actions in neonatal and adult rat ventricular myocytes.Circ Res 1995; 76:40-52.
  • [7]Zhou YY, Cheng H, Bogdanov KY, Hohl C, Altschuld R,Lakatta EG, Xiao RP. Localized cAMP-dependent signaling mediates β2-adrenergic modulation of cardiac excitation- contraction coupling. Am J Physiol Heart Circ Physiol 1997;273:H1611-H1618.
  • [8]Altschuld RA, Starling RC, Hamlin RL, Billman GE, Hensley J, Castillo L, Fertel RH, Hohl CM, Robitaille PM, Jones LR, et al. Response of failing canine and human heart cells to β2-adrenergic stimulation. Circulation 1995; 92:1612-1618.
  • [9]Kuschel M, Zhou YY, Spurgeon HA, Barrel S, Karczewski P, Zhang S J, Krause EG, Lakatta EG, Xiao RP. β2-adrenergic cAMP signaling is uncoupled from phosphorylation of cytoplasmic proteins in canine heart. Circulation 1999; 99:2458-2465.
  • [10]Kuschel M, Zhou YY, Cheng H, Zhang SJ, Chen Y, Lakatta EG, Xiao RP. Gi protein-mediated functional compartmentalization of cardiac β2-adrenergic signaling. J Biol Chem 1999; 274:22048-22052.
  • [11]Kaumann AJ, Sanders L, Lynham JA, Bartel S, Kuschel M,Karczewski P, Krause EG. β2-adrenoceptor activation by zinterol causes protein phosphorylation, contractile effects and relaxant effects through a cAMP pathway in human atrium. Mol Cell Biochem 1996; 163-164:113-123.
  • [12]Kaumann A, Bartel S, Molenaar P, Sanders L, Burrell K,Vetter D, Hempel P, Karczewski P, Krause EG. Activation of β2-adrenergic receptors hastens relaxation and mediates phosphorylation of phospholamban, troponin I, and C-protein in ventricular myocardium from patients with terminal heart failure. Circulation 1999; 99:65-72.
  • [13]Chen-Izu Y, Xiao RP, Izu LT, Cheng H, Kuschel M, Spurgeon H, Lakatta EG. Gi-dependent localization of β2-adrenergic receptor signaling to L-type Ca2+ channels. Biophys J 2000;79: 2547-2556.
  • [14]Davare MA, Avdonin V, Hall DD, Peden EM, Burette A,Weinberg RJ, Home MC, Hoshi T, Hell JW. A β2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cavl.2. Science 2001; 293:98-101.
  • [15]Steinberg SF, Alcott S, Pak E, Hu D, Protas L, Moise NS,Robinson RB, Rosen MR. βl-receptors increase cAMP and induce abnormal Cai cycling in the German shepherd sud den death model. Am J Physiol Heart Circ Physiol 2002; 282:H1181-H1188.
  • [16]Sosunov EA, Gainullin RZ, Moise NS, Steinberg SF, Danilo P, Rosen MR. β1 and β2-adrenergic receptor subtype effects in German shepherd dogs with inherited lethal ventricular arrhythmias. Cardiovasc Res 2000;48:211-219.
  • [17]Xiao RP, Ji X, Lakatta EG. Functional coupling of the β2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol Pharmacol 1995; 47:322-329.
  • [18]Xiao RP, Avdonin P, Zhou YY, Cheng H, Akhter SA,Eschenhagen T, Lefkowitz RJ, Koch WJ, Lakatta EG. Coupling of β2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 1999; 84:43-52.
  • [19]Kilts JD, Gerhardt MA, Richardson MD, Sreeram G, Mackensen GB, Grocott HP, White WD, Davis RD, Newman MF, Reves JG, Schwinn DA, Kwatra MM. β2-adrenergic and several other G protein-coupled receptors in human atrial membranes activate both Gs and Gi. Circ Res 2000; 87:705-709.
  • [20]Xiao RP, Tomhave ED, Wang DJ, Ji X, Boluyt MO, Cheng H, Lakatta EG, Koch WJ. Age-associated reductions in cardiac β1- and β2-adrenergic responses without changes in inhibitory G proteins or receptor kinases. J Clin Invest 1998;101:1273-1282.
  • [21]Jo SH, Leblais V, Wang PH, Crow MT, Xiao RP. Phosphatidylinositol 3-kinase functionally compartmentalizes the concurrent Gs signaling during β2-adrenergic stimulation. Circ Res 2002; 91:46-53.
  • [22]Klauck TM, Faux MC, Labudda K, Langeberg LK, Jaken S,Scott JD. Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science 1996; 271:1589-1592.
  • [23]Fink MA, Zakhary DR, Mackey JA, Desnoyer RW, AppersonHansen C, Damron DS, Bond M. AKAP-mediated targeting of protein kinase A regulates contractility in cardiac myocytes. Circ Res 2001; 88:291-297.
  • [24]Shih M, Lin F, Scott JD, Wang HY, Malbon CC. Dynamic complexes of β2-adrenergic receptors with protein kinases and phosphatases and the role of gravin. J Biol Chem 1999;274:1588-1595.
  • [25]Lin F, Wang H, Malbon CC. Gravin-mediated formation of signaling complexes in β2-adrenergic receptor desensitization and resensitization. J Biol Chem 2000; 275:19025-19034.
  • [26]Fan G, Shumay E, Wang H, Malbon CC. The scaffold protein gravin (cAMP-dependent protein kinase-anchoring protein 250) binds the β2-adrenergic receptor via the receptor cytoplasmic Arg-329 to Leu-413 domain and provides a mobile scaffold during desensitization. J Biol Chem 2001; 276:24005-24014.
  • [27]Fraser ID, Cong M,Kim J, Rollins EN, Daaka Y, Lefkowitz R J, Scott JD. Assembly of an A kinase-anchoring proteinβ2-adrenergic receptor complex facilitates receptor phosphorylation and signaling. Curr Biol 2000; 10:409-412.
  • [28]Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD,Hajjar RJ, Schmidt U, Semigran M J, Dec GW, Khaw BA. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996; 335:1182-1189.
  • [29]Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing humans heart. N Engl J Med 1997; 336:1131-1141.
  • [30]Olivetti G, Quaini F, Sala R, Lagrasta C, Corradi D, Bonacina E, Gambert SR, Cigola E, Anversa P. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 1996; 28:2005-2016.
  • [31]Teiger E, Than VD, Richard L, Wisnewsky C, Tea BS,Gaboury L, Tremblay J, Schwartz K, Hamer P. Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest 1996; 97:2891-2897.
  • [32]Li Z, Bing OH, Long X, Robinson KG, Lakatta EG. Increased cardiomycyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physio11997;272:H2313-H2319.
  • [33]Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S,Factor SM, Shirani J, Armstrong RC, Kitsis RN. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 2003; 111:1497-1504.
  • [34]Communal C, Singh K, Sawyer DB, Colucci WS. Opposing effects of β1- and β2-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein.Circulation 1999; 100:2210-2212.
  • [35]Zaugg M, Xu W, Lucchinetti E, Shafiq SA, Jamali NZ,Siddiqui MA. β-adrenergic receptor subtypes differentially affect apoptosis in adult rat ventricular myocytes. Circulation 2000; 102:344-350.
  • [36]Rohrer DK, Chruscinski A, Schauble EH, Bernstein D,Kobilka BK. Cardiovascular and metabolic alterations in mice lacking both β1- and β2-adrenergic receptors. J Biol Chem 1999; 274:16701-16708.
  • [37]Zhou YY, Wang SQ, Zhu WZ, Chruscinski A, Kobilka BK,Ziman B, Wang S, Lakatta EG, Cheng H, Xiao RP. Culture and adenoviral infection of adult mouse cardiac myocytes:methods for cellular genetic physiology. Am J Physiol Heart Circ Physiol 2000; 279:H429-H436
  • [38]Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK,Xiao RP. Dual modulation of cell survival and cell death by β2-adrenergic signaling in adult mouse cardiac myocytes.Proc Natl Acad Sci USA 2001; 98:1607-1612.
  • [39]Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG, Crow MT. The β2-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through Gi-dependent coupling to phosphatidylinositol 3'-kinase. Circ Res 2000;87:1172-1179.
  • [40]Engelhardt S, Hein L, Wiesmann F, Lohse MJ. Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 1999; 96:7059-7064.
  • [41]Bisognano JD, Weinberger HD, Bohlmeyer TJ, Pende A,Raynolds MV, Sastravaha A, Roden R, Asano K, Blaxall BC, Wu SC, Communal C, Singh K, Colucci W, Bristow MR, Port DJ. Myocardial-directed overexpression of the human β1-adrenergic receptor in transgenic mice. J Mol Cell Cardiol 2000; 32:817-830.
  • [42]Asai K, Yang GP, Geng Y J, Takagi G, Bishop S, Ishikawa Y, Shannon RP, Wagner TE, Vatner DE, Homcy C J, Vatner SF. β-adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic Gsa mouse.J Clin Invest 1999; 104:551-558.
  • [43]Iwase M, Bishop SP, Uechi M, Vatner DE, Shannon RP,Kudej RK, Wight DC, Wagner TE, Ishikawa Y, Homcy C J,Vatner SF. Adverse effects of chronic endogenous sympathetic drive induced by cardiac Gsαoverexpression. Circ Res 1996; 78:517-524.
  • [44]Milano CA, Allen LF, Rockman HA, Dolber PC, McMinn TR, Chien KR, Johnson TD, Bond RA, Lefkowitz RJ. Enhanced myocardial function in transgenic mice overexpressing the β2-adrenergic receptor. Science 1994;264:582-586.
  • [45]Dom GW 2nd, Tepe NM, Lorenz JN, Koch WJ, Liggett SB.Low- and high-level transgenic expression of β2-adrenergic receptors differentially affect cardiac hypertrophy and function in Gαq-overexpressing mice. Proc Natl Acad Sci USA 1999; 96:6400-6405.
  • [46]Liggett SB, Tepe NM, Lorenz JN, Canning AM, Jantz TD,Mitarai S, Yatani A, Dom GW 2nd. Early and delayed consequences of β2-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 2000;101:1707-1714.
  • [47]Rohrer DK, Desai KH, Jasper JR, Stevens ME, Regula DP Jr, Barsh GS, Bernstein D, Kobilka BK. Targeted disruption of the mouse β1-adrenergic receptor gene: developmental and cardiovascular effects. Proc Natl Acad Sci USA 1996;93:7375-7380.
  • [48]Chmscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Kobilka BK. Targeted disruption of the β2-adrenergic receptor gene. J Biol Chem 1999; 274:16694-16700.
  • [49]Patterson AJ. Protecting the myocardium: A role for the β2-adrenergic receptor in the heart. Crit Care Med 2003 (in press).
  • [50]Daaka Y, Luttrell LM, Lefkowitz RJ. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 1997; 390:88-91.
  • [51]Communal C, Colucci WS, Singh K. p38 mitogen-activated protein kinase pathway protects adult rat ventricular myocytes against β-adrenergic receptor-stimulated apoptosis.Evidence for Gi-dependent activation. J Biol Chem 2000;275:19395-19400.
  • [52]Zheng M, Zhang SJ, Zhu WZ, Ziman B, Kobilka BK, Xiao RP. β2-adrenergic receptor-induced p38 MAPK activation is mediated by protein kinase A rather than by Gi or Gβγ in adult mouse cardiomyocytes. J Biol Chem 2000; 275:40635-40640.
  • [53]Shizukuda Y, Buttrick PM. Subtype specific roles of β-adrenergic receptors in apoptosis of adult rat ventricular myocytes. J Mol Cell Cardiol 2002; 34:823-831.
  • [54]Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH,Devic E, Kobilka BK, Cheng H, Xiao RP. Linkage of β1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase Ⅱ. J Clin Invest 2003; 111:617-625.
  • [55]Penn RB, Parent JL, Pronin AN, Panettieri RA Jr, Benovic JL. Pharmacological inhibition of protein kinases in intact cells: antagonism of β-adrenergic receptor ligand binding by H-89 reveals limitations of usefulness. J Pharmacol Exp Ther 1999; 288:428-437.
  • [56]Tepe NM, Lorenz JN, Yatani A, Dash R, Kranias EG, Dorn GW 2nd, Liggett SB. Altering the receptor-effector ratio by transgenic overexpression of type V adenylyl cyclase: enhanced basal catalytic activity and function without increased cardiomyocyte β-adrenergic signaling. Biochemistry 1999;38:16706-16713.
  • [57]Gao MH, Lai NC, Roth DM, Zhou J, Zhu J, Anzai T, Dalton N, Hammond HK. Adenylyl cyclase increases responsiveness to catecholamine stimulation in transgenic mice. Circulation 1999; 99:1618-1622.
  • [58]Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J Jr, Bers DM, Brown JH. The δC isoform of CaMK Ⅱ is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res 2003; 92:912-919.
  • [59]Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM. Transgenic CaMK ⅡδC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res 2003; 92:904-911.
  • [60]Schafer M, Frischkopf K, Taimor G, Piper HM, Schluter KD.Hypertrophic effect of selective β1-adrenoceptor stimulation on ventricular cardiomyocytes from adult rat. Am J Physiol Cell Physiol 2000; 279:C495-C503.
  • [61]Morisco C, Zebrowski DC, Vatner DE, Vatner SF, Sadoshima J. β-adrenergic cardiac hypertrophy is mediated primarily by the β1-subtype in the rat heart. J Mol Cell Cardiol 2001;33:561-573.
  • [62]Morisco C, Zebrowski D, Condorelli G, Tsichlis P, Vatner SF,Sadoshima J. The Akt-glycogen synthase kinase 3β pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes. J Biol Chem 2000; 275: 14466-14475.
  • [63]Ramirez MT, Zhao XL, Schulman H, Brown JH. The nuclear δB isoform of Ca2+/calmodulin-dependent protein kinase Ⅱ regulates atrial natriuretic factor gene expression in ventricular myocytes. J Biol Chem 1997; 272:31203-31208.
  • [64]Colomer JM, Means AR. Chronic elevation of calmodulin in the ventricles of transgenic mice increases the autonomous activity of calmodulin-dependent protein kinase Ⅱ,which regulates atrial natriuretic factor gene expression. Mol Endocrinol 2000; 14:1125-1136.
  • [65]Colomer JM, Mao L, Rockman HA, Means AR. Pressure overload selectively up-regulates Ca2+/calmodulin-dependent protein kinase Ⅱ in vivo. Mol Endocrinol 2003; 17:183-192.
  • [66]Bond RA, Leff P, Johnson TD, Milano CA, Rockman HA,McMinn TR, Apparsundaram S, Hyek MF, Kenakin TP,Allen LF, et al. Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the β2-adrenoceptor. Nature 1995; 374:272-276.
  • [67]Zhou YY, Song LS, Lakatta EG, Xiao RP, Cheng H.Constitutive β2-adrenergic signaling enhances SR calcium to augment contraction in mouse heart. J Physiol 1999; 521(Pt 2):351-361.
  • [68]Zhou YY, Cheng H, Song LS, Wang D, Lakatta EG, Xiao RP.Differential regulation of cardiac L-type calcium channel current by constitutively active and agonist-activated β2-adrenergic receptor signaling. Mol Parmacol 1999; 56:485-493.
  • [69]Gong H, Adamson DL, Ranu HK, Koch WJ, Heubach JF,Ravens U, Zolk O, Harding SE. The effect of Gi-protein inactivation on basal, and β1- and β2-stimulated contraction of myocytes from transgenic mice overexpressing the β2-adrenoceptor. Br J Pharmacol 2000; 131:594-600.
  • [70]Zhou YY, Yang D, Zhu WZ, Zhang S J, Wang DJ, Rohrer DK,Devic E, Kobilka BK, Lakatta EG, Cheng H, Xiao RP. Spontaneous activation of β2- but not β1-adrenoceptors expressed in cardiac myocytes from β1 β2 double knockout mice. Mol Pharmacol 2000; 58:887-894.
  • [71]Zhang S J, Cheng H, Zhou YY, Wang DJ, Zhu W, Ziman B,Spurgoen H, Lefkowitz R J, Lakatta EG, Koch W J, Xiao RP.Inhibition of spontaneous β2-adrenergic activation rescues β1-adrenergic contractile response in cardiomyocytes overexpressing β2-adrenoceptor. J Biol Chem 2000; 275:21773-21779.
  • [72]Hannawacker A, Krasel C, Lohse MJ. Mutation of Asn293 to Asp in transmembrane helix VI abolishes agonist-induced but not constitutive activity of the β2-adrenergic receptor.Mol Pharmacol 2002:62:1431-1437.
  • [73]Peleg G, Ghanouni P, Kobilka BK, Zare RN. Singlemolecule spectroscopy of the β2-adrenergic receptor: observation of conformational substates in a membrane protein.Proc Natl Acad Sci USA 2001; 98:8469-8474.
  • [74]Ghanouni P, Gryczynski Z, Steenhuis J J, Lee TW, Farrens DL, Lakowicz JR, Kobilka BK. Functionally different agonists induce distinct conformations in the G protein coupling domain of the β2-adrenergic receptor. J Biol Chem 2001; 276:24433-24436.
  • [75]Engelhardt S, Grimmer Y, Fan GH, Lohse MJ. Constitutive activity of the human β1-adrenergic receptor in β1-receptor transgenic mice. Mol Pharmacol 2001; 60:712-717.
  • [76]Chakir K, Xiang Y, Yang D, Zhang S J, Cheng H, Kobilka BK, Xiao RP. The third intracellular loop and the carboxyl terminus of β2-adrenergic receptor confer the receptor spontaneous activity. Mol Pharmacol 2003; 64:1048-1058
  • [77]Xiang Y, Devic E, Kobilka B. The PDZ binding motif of the β1-adrenergic receptor modulates receptor trafficking and signaling in cardiac myocytes. J Biol Chem 2002; 277:33783-33790.
  • [78]Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS,Simon AB, Rector T. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure.N Engl J Med, 1984; 311:819-823.
  • [79]Koch WJ, Rockman HA, Samama P, Hamilton RA, Bond RA,Milano CA, Lefkowitz RJ. Cardiac function in mice overexpressing the β-adrenergic receptor kinase or a β ARK inhibitor. Science 1995; 268:1350-1353.
  • [80]Rockman HA, Chien KR, Choi DJ, Iaccarino G, Hunter JJ,Ross J Jr, Lefkowitz RJ, Koch WJ. Expression of a β-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Natl Acad Sci USA 1998; 95:7000-7005.
  • [81]Harding VB, Jones LR, Lefkowitz RJ, Koch WJ, Rockman HA. Cardiac βARK1 inhibition prolongs survival and augments β blocker therapy in a mouse model of severe heart failure. Proc Natl Acad Sci USA 2001; 98:5809-5814.
  • [82]Coats AJ. Heart failure 99 - the MOXCON story. Int J Cardiol 1999; 71:109-111.
  • [83]The β-Blocker Evaluation of Survival Trial Investigators.A trial of the β-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med 2001; 344:1659-1667.
  • [84]Negut C. Effects of β-blocker therapy in severe chronic heart failure. N Engl J Med 2001; 345:998-999.
  • [85]Mason DA, Moore JD, Green SA, Liggett SB. A gain-offunction polymorphism in a G-protein coupling domain of the human β1-adrenergic receptor. J Biol Chem 1999; 274:12670-12674.
  • [86]Iwai C, Akita H, Kanazawa K, Shiga N, Terashima M,Matsuda Y, Takai E, Miyamoto Y, Shimizu M, Kajiya T,Hayashi T, Yokoyama M. Arg389Gly polymorphism of the human β1-adrenergic receptor in patients with nonfatal acute myocardial infarction. Am Heart J 2003; 146:106-109.
  • [87]Wagoner LE, Craft LL, Zengel P, McGuire N, Rathz DA,Dom GW 2nd, Liggett SB. Polymorphisms of the β1-adrenergic receptor predict exercise capacity in heart failure.Am Heart J 2002; 144:840-846.
  • [88]Small KM, Wagoner LE, Levin AM, Kardia SL, Liggett SB.Synergistic polymorphisms of β1- and α2c-adrenergic receptors and the risk of congestive heart failure. N Engl J Med 2002; 347:1135-1142.
  • [89]Liggett SB, Wagoner LE, Craft LL, Hornung RW, Hoit BD,McIntosh TC, Walsh RA. The Ile164 β2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest 1998; 102:1534-1539.
  • [90]Eschenhagen T, Mende U, Nose M, Schmitz W, Scholz H,Haverich A, Hirt S, Doring V, Kalmar P, Hoppner W, et al. Increased messenger RNA level of the inhibitory G protein alpha subunit Gi alpha-2 in human end-stage heart failure. Circ Res 1992;70:688-696.
  • [91]Bohm M, Eschenhagen T, Gierschik P, Larisch K, Lensche H, Mende U, Schmitz W, Schnabel P, Scholz H, Steinfath M, et al. Radioimmunochemical quantification of Giα in right and left ventricles from patients with ischaemic and dilated cardiomyopathy and predominant left ventricular failure. J Mol Cell Cardiol 1994; 26:133-149.
  • [92]Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W,Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S, et al. β1- and β2-adrenergic-receptor subpopulations in nonfailing and falling human ventficular myocardium: coupling of both receptor subtypes to muscle contraction and selective β1-receptor down-regulation in heart failure. Circ Res, 1986;59:297-309.
  • [93]Kiuchi K, Shannon RP, Komamura K, Cohen DJ, Bianchi C, Homcy CJ, Vatner SF, Vatner DE. Myocardial β -adrenergic receptor function during the development of pacing-induced heart failure. J Clin Invest 1993; 91:907-914.
  • [94]Xiao RP, Zhang S J, Chakir K, Avdonin P, Zhu W, Bond RA,Balke CW, Lakatta EG, Cheng H. Enhanced Gi signaling mediates the diminution of β2-adrenergic contractile response in failing spontaneous hypertensive rat heart. Circulation 2003; 108:1633-1639.
  • [95]Kompa AR, Gu XH, Evans BA, Summers RJ. Desensitization of cardiac β-adrenoceptor signaling with heart failure produced by myocardial infarction in the rat. Evidence for the rote of Gi but not Gs or phosphorylating proteins. J Mol Cell Cardiol 1999; 31:1185-1201.
  • [96]Brown LA, Harding SE. The effect of pertussis toxin on β-adrenoceptor responses in isolated cardiac myocytes from noradrenaline-treated guinea-pigs and patients with cardiac failure. Br J Pharmacol 1992; 106:115-122.
  • [97]McGraw DW, Almoosa KF, Paul RJ, Kobilka BK, Liggett SB. Antithetic regulation by beta-adrenergic receptors of Gq receptor signaling via phospholipase C underlies the airway beta-agonist paradox. J Clin Invest 2003; 112:619-626.
  • [98]Maack C, Elter T, Nickenig G, LaRosee K, Crivaro M,Stablein A, Wuttke H, Bohm M. Prospective crossover comparison of carvedilol and metoprolol in patients with chronic heart failure. J Am Coll Cardiol 2001; 38:939-946.
  • [99]Metra M, Giubbini R, Nodari S, Boldi E, Modena MG, Dei Cas L. Differential effects of β-blockers in patients with heart failure: A prospective, randomized, double-blind comparison of the long-term effects of metoprolol versus carvedilol. Circulation 2000; 102:546-551.
  • [100]Poole-Wilson PA, Swedberg K, Cleland JG, Di Lenarda A,Hanrath P, Komajda M, Lubsen J, Lutiger B, Metra M,Remme WJ, Torp-Pedersen C, Scherhag A, Skene A;Carvedilol Or Metoprolol European Trial Investigators.Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET):randomised controlled trial. Lancet 2003; 362:7-13.
  • [101]Bristow MR, Larrabee P, Minobe W, Roden R, Skerl L,Klein J, Handwerger D, Port JD, Muller-Beckmann B.Receptor pharmacology of carvedilol in the human heart.J Cardiovasc Pharmacol 1992; 19 (Suppl 1):S68-S80.
  • [102]Bristow MR, Larrabee P, Muller-Beckmann B, Minobe W,Roden R, Skerl L, Klein J, Handwerger D, Port JD. Effects of carvedilol on adrenergic receptor pharmacology in human ventricular myocardium and lymphocytes. Clin Investig 1992; 70 (Suppl 1):S105-S113.
  • [103]Abreu RM, Santos DJ, Moreno AJ. Effects of carvedilol and its analog BM-910228 on mitochondrial function and oxidative stress. J Pharmacol Exp Ther 2000; 295:1022-1030.
  • [104]Dandona P, Kame R, Ghanim H, Hamouda W, Aljada A,Magsino CH Jr. Carvedilol inhibits reactive oxygen species generation by leukocytes and oxidative damage to amino acids. Circulation 2000; 101:122-124.
  • [105]Hall JA, Kaumann AJ, Brown MJ. Selective β1-adrenoceptot blockade enhances positive inotropic responses to endogenous catecholamines mediated through β2-adrenoceptors in human atrial myocardium. Circ Res 1990;66:1610-1623.
  • [106]Hall JA, Petch MC, Brown MJ. In vivo demonstration of cardiac β2-adrenoreceptor sensitization by β1-antagonist treatment. Circ Res 1991;69:959-964.
  • [107]Jia H, Monteith S, Brown MJ. Expression of the α- and β-subunits of the stimulatory and inhibitory G-proteins in β1-adrenoceptor-blocked and non-β-adrenoceptor-blocked human atrium. Clin Sci (Lond) 1995; 88:571-580.
  • [108]Wang T, Plumpton C, Brown MJ. Selective β1-adrenoceptor blockade enhances the activity of the stimulatory Gprotein in human atrial myocardium. Br J Pharmacol 1999;128:135-141.
  • [109]Ping P, Gelzer-Bell R, Roth DA, Kiel D, Insel PA, Hammond HK. Reduced β-adrenergic receptor activation decreases G-protein expression and β-adrenergic receptor kinase activity in porcine heart. J Clin Invest 1995; 95:1271-1280.
  • [110]Iaccarino G, Tomhave ED, Lefkowitz RJ, Koch WJ. Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by β-adrenergic receptor stimulation and blockade. Circulation 1998; 98:1783-1789.
  • [111]Flesch M, Ettelbmck S, Rosenkranz S, Maack C, Cremers B,Schluter KD, Zolk O, Bohm M. Differential effects of carvedilol and metoprolol on isoprenaline-induced changes in β-adrenoceptor density and systolic function in rat cardiac myocytes. Cardiovasc Res 2001; 49:371-380.
  • [112]Callaerts-Vegh Z, Evans KL, Shipley GL, Davies PJ, Cuba DL, Gurji HA, Giles H, Bond RA. Effects of different βadrenoceptor ligands in mice with permanent occlusion of the left anterior descending coronary artery. Br J Pharmacol 2003; 138:1505-1516.
WanfangData CO.,Ltd All Rights Reserved
About WanfangData | Contact US
Healthcare Department, Fuxing Road NO.15, Haidian District Beijing, 100038 P.R.China
Tel:+86-010-58882616 Fax:+86-010-58882615 Email:yiyao@wanfangdata.com.cn