Regulation of neuromuscular transmission by neurotrophins

( views:75, downloads:0 )
Carlos B.Mantilla()
Gary C.Sieck()
Journal Title:
Volume 55, Issue 06, 2003
Key Word:
brain-derived neurotrophic factor;diaphragm muscle;neuromuscular transmission failure;neurotrophin-4;spinal cord injury;synaptic efficacy;synaptic vesicles;tyrosine kinase receptor B

Abstract: Motor units comprise a motoneuron and the muscle fibers it innervates. Neuromuscular transmission is tightly regulated to match the activity of individual motor units. Activity-dependent release of neuromodulators at the neuromuscular junction (NMJ) determines the efficacy of transmission. The neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4) are produced by motoneurons and muscle fibers, and their release by skeletal muscle is regulated by muscle activity. BDNF and NT-4 enhance both spontaneous and evoked synaptic transmission at NMJs via activation of the tyrosine kinase receptor B (TrkB). Improvements in neuromuscular transmission may result from increased release of synaptic vesicles, either by presynaptic alterations in Ca2 + transients or facilitated vesicular exocytosis. In fact, BDNF potentiates intracellular Ca2 + release presynaptically and BDNF-induced TrkB activation also results in phosphorylation of synapsin Ⅰ via mitogen activated protein kinase, which increases the number of synaptic vesicles available for release. Neurotrophins may also regulate synaptic transmission at the NMJ by increasing local release of neuregulin or other nerve-derived modulators. We review recent studies on the regulation of neuromuscular transmission, the motor unit-specific properties of NMJs and the effects of neurotrophins on synaptic efficacy at the NMJ.

  • [1]Burke RE. Motor units: anatomy, physiology and functional organization. In: Peachey LD, editors. Handbook of Physiology. The Nervous System. Motor Control. Bethesda, MD: Am Physiol Soc 1981;3:345-422.
  • [2]Sieck GC, Fournier M, Enad JG. Fiber type composition of muscle units in the cat diaphragm. Neurosci Lett 1989;97:29 - 34.
  • [3]Mantilla CB, Sieck GC. Plasticity in Respiratory Motor Control: Invited Review: Mechanisms underlying motor unit plasticity in the respiratory system. J Appl Physiol 2003 ;94:1230 - 1241.
  • [4]Rettig J, Neher E. Emerging roles of presynaptic proteins in Ca2 + -triggered exocytosis. Science 2002; 298:781 -785.
  • [5]Sutton RB, Fasshauer D, Jahn R, Brunger AT. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 1998;395:347 -353.
  • [6]Rosenmund C, Sigler A, Augustin I, Reim K, Brose N,Rhee JS. Differential control of vesicle priming and shortterm plasticity by Munc13 isoforms. Neuron 2002 ;33:411- 424.
  • [7]Sugita S, Shin OH, Han W, Lao Y, Sudhof TC. Synaptotagmins form a hierarchy of exocytotic Ca2+ sensors with distinct Ca2 + affinities. Embo J 2002 ;21:270 - 280.
  • [8]Sandrock AW, Jr., Dryer SE, Rosen KM, Gozani SN,Kramer R, Theill LE, Fischbach GD. Maintenance of acetylcholine receptor number by neuregulins at the neuromuscular junction in vivo. Science 1997 ;276:599 -603.
  • [9]Sanes JR, Lichtman JW. Development of the vertebrate neuromuscular junction. Annual Review of Neuroscience 1999 ;22:389 - 442.
  • [10]Nemeth PM, Solanki L, Gordon DA, Hamm TM, Reinking RM, Stuart DG. Uniformity of metabolic enzymes within individual motor units. J Neurosci 1986; 6: 892 -898.
  • [11]Sieck GC, Fournier M, Prakash YS, Blanco CE. Myosin phenotype and SDH enzyme variability among motor unit fibers. J Appl Physiol 1996;80:2179-2189.
  • [12]Burke RE, Levine DN, Zajac FE, 3rd. Mammalian motor units: physiological-histochemical correlation in three types in cat gastrocnemius. Science 1971; 174:709 - 712.
  • [13]Clamann HP, Robinson AJ. A comparison of electromyographic and mechanical fatigue properties in motor units of the cat hindlimb. Brain Res 1985 ;327:203 - 219.
  • [14]Sieck GC, Fournier M. Changes in diaphragm motor unit EMG during fatigue. J Appl Physiol 1990; 68:1917 -1926.
  • [15]Prakash YS, Miller SM, Huang M, Sieck GC. Morphology of diaphragm neuromuscular junctions on different fibre types. J Neurocytol 1996 ;25:88 - 100.
  • [16]Sieck GC, Prakash YS. Morphological adaptations of neuromuscular junctions depend on fiber type. Can J Appl Physiol 1997 ;22:197 - 230.
  • [17]Fahim MA, Holley JA, Robbins N. Topographic comparison of neuromuscular junctions in mouse slow and fast twitch muscles. Neuroscience 1984; 13:227 - 235.
  • [18]Prakash YS, Smithson KG, Sieck GC. Growth-related alterations in motor endplates of type-identified diaphragm muscle fibres. J Neurocytol 1995 ;24:225 - 235.
  • [19]Prakash YS, Sieck GC. Age-related remodeling of neuromuscular junctions on type-identified diaphragm fibers.Muscle Nerve 1998 ;21:887 - 895.
  • [20]Prakash YS, Zhan WZ, Miyata H, Sieck GC. Adaptations of diaphragm neuromuscular junction following inactivity.Acta Anat 1995; 154:147 - 161.
  • [21]Prakash YS, Miyata H, Zhan WZ, Sieck GC. Inactivityinduced remodeling of neuromuscular junctions in rat diaphragmatic muscle. Muscle Nerve 1999 ;22:307 - 319.
  • [22]Prakash YS, Gosselin LE, Zhan WZ, Sieck GC. Alterations of diaphragm neuromuscular junctions with hypothyroidism. J Appl Physiol 1996;81:1240- 1248.
  • [23]Blanco CE, Zhan WZ, Fang YH, Sieck GC. Exogenous testosterone treatment decreases diaphragm neuromuscular transmission failure in male rats. J Appl Physiol 2001 ;90:850 - 856.
  • [24]Sieck GC, Van Balkom RH, Prakash YS, Zhan WZ,Dekhuijzen PN. Corticosteroid effects on diaphragm neuromuscular junctions. J Appl Physiol 1999 ;86:114 - 122.
  • [25]Pette D. Historical Perspectives: plasticity of mammalian skeletal muscle. J Appl Physiol 2001 ;90:1119 - 1124.
  • [26]Pette D, Staron RS. Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol 2001; 115:359 - 372.
  • [27]Zhan WZ, Miyata H, Prakash YS, Sieck GC. Metabolic and phenotypic adaptations of diaphragm muscle fibers with inactivation. J Appl Physiol 1997 ;82:1145 - 1153.
  • [28]Miyata H, Zhan WZ, Prakash YS, Sieck GC. Myoneural interactions affect diaphragm muscle adaptations to inactivity. J Appl Physiol 1995 ;79:1640 - 1649.
  • [29]Barbacid M. The Trk family of neurotrophin receptors. J Neurobiol 1994 ;25:1386 - 1403.
  • [30]Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001;24:677 - 736.
  • [31]Funakoshi H, Frisen J, Barbany G, Zachrisson O, Verge VM, H. P. Differential expression of mRNAs for neurotrophins and their receptors after axotomy. J Cell Biol 1993; 123:455 - 465.
  • [32]Timmusk T, Belluardo N, Metsis M, Persson H. Widespread and developmentally regulated expression of neurotrophin-4 messenger RNA in rat brain and peripheral tissues. Eur J Neurosci 1993 ;5:605 -613.
  • [33]Griesbeck O, Parsadanian AS, Sendtner M, Thoenen H.Expression of neurotrophins in skeletal muscle: quantitative comparison and significance for motoneuron survival and maintenance of function. J Neurosci Res 1995 ;42:21-33.
  • [34]Ip FC, Cheung J, Ip NY. The expression profiles of neurotrophins and their receptors in rat and chicken tissues during development. Neurosci Lett 2001 ;301:107 - 110.
  • [35]Erickson JT, Conover JC, Borday V, Champagnat J, Barbacid M, Yancopoulos G, Katz DM. Mice lacking brainderived neurotrophic factor exhibit visceral sensory neuron losses distinct from mice lacking NT4 and display a severe developmental deficit in control of breathing. J Neurosci 1996; 16:5361 - 5371.
  • [36]Seidl K, Erck C, Buchberger A. Evidence for the participation of nerve growth factor and its low-affinity receptor (p75NTR) in the regulation of the myogenic program. J Cell Physiol 1998; 176:10 - 21.
  • [37]Widenfalk J, Lundstromer K, Jubran M, Brene S, Olson L. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J Neurosci 2001 ;21:3457 - 3475.
  • [38]Lu B. BDNF and activity-dependent synaptic modulation.Learn Mem 2003; 10:86 - 98.
  • [39]Kafitz KW, Rose CR, Thoenen H, Konnerth A. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 1999 ;401:918 - 921.
  • [40]Kang H, Schuman EM. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 1995 ;267:1658 - 1662.
  • [41]Cohen-Cory S. The developing synapse: Construction and modulation of synaptic structures and circuits. Science 2002 ;298:770 - 776.
  • [42]Schinder AF, Poo M. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci 2000;23:639-645.
  • [43]Poo MM. Neurotrophins as synaptic modulators. Nat Rev Neurosci 2001 ;2:24 - 32.
  • [44]Schecterson L, Bothwell M. Novel roles for neurotrophins are suggested by BDNF and NT-3 mRNA expression in developing neurons. Neuron 1992 ;9:449 - 463.
  • [45]Henderson CE, Camu W, Mettling C, Gouin A, Poulsen K, Karihaloo M, Rullamas J, Evans T, McMahon SB,Armanini MP, Berkemeier L, Phillips HS, Rosenthal A.Neurotrophins promote motor neurons survival and are present in embryonic limb bud. Nature 1993; 363: 266 -270.
  • [46]Koliatsos VE, Clatterbuck RE, Winslow JW, Cayouette MH, Price DL. Evidence that brain-derived neurotrophic factor is atrophic factor for motor neurons in vivo.Neuron 1993; 10:359 - 367.
  • [47]Johnson RA, Okragly AJ, Haak-Frendscho M, Mitchell GS. Cervical dorsal rhizotomy increases brain-derived neurotrophic factor and neurotrophin-3 expression in the ventral spinal cord. J Neurosci 2000;20:RC 77.
  • [48]Funakoshi H, Belluardo N, Arenasa E, Yamamoto Y,Casabona A, H. P, Ibanez CF. Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. Science 1995 ;268:1495 - 1499.
  • [49]Sakuma K, Watanabe K, Sano M, Uramoto I, Nakano H,Li YJ, Kaneda S, Sorimachi Y, Yoshimoto K, Yasuhara M, Totsuka T. A possible role for BDNF, NT-4 and TrkB in the spinal cord and muscle of rat subjected to mechanical overload, bupivacaine injection and axotomy. Brain Res 2001 ;907:1 - 19.
  • [50]Gonzalez M, Ruggiero FP, Chang Q, Shi Y J, Rich MM,Kraner S, Balice-Gordon RJ. Disruption of Trkb-mediatedsignaling induces disassembly of postsynaptic receptor clusters at neuromuscular junctions. Neuron 1999 ;24:567- 583.
  • [51]Lohof AM, Ip NY, Poo MM. Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature 1993 ;363:350 -353.
  • [52]Boulanger L, Poo MM. Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation. Nat Neurosci 1999 ;2:346 - 351.
  • [53]Wang XH, Poo MM. Potentiation of developing synapses by postsynaptic release of neurotrophin-4. Neuron 1997;19:825 - 835.
  • [54]Kleiman R J, Tian N, Krizaj D, Hwang TN, Copenhagen DR, Reichardt LF. BDNF-Induced potentiation of spontaneous twitching in innervated myocytes requires calcium release from intracellular stores. J Neurophysiol 2000;84:472 - 483.
  • [55]Mantilla CB, Zhan WZ, Sieck GC. Neurotrophins Improve Neuromuscular Transmission in the Adult Rat Diaphragm.Muscle Nerve 2004; (In press).
  • [56]Jovanovic JN, Benfenati F, Siow YL, Sihra TS, Sanghera JS, Pelech SL, Greengard P, Czernik AJ. Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc Natl Aced Sci USA 1996 ;93:3679 - 3683.
  • [57]Hilfiker S, Pieribone VA, Czernik A J, Kao HT, Augustine GJ, Greengard P. Synapsins as regulators of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci 1999 ;354:269 - 279.
  • [58]Jovanovic JN, Czernik AJ, Fienberg AA, Greengard P,Sihra TS. Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nat Neurosci 2000 ;3:323 -329.
  • [59]Kimpinski K, Campenot RB, Mearow K. Effects of the neurotrophins nerve growth factor, neurotrophin-3, and brain-derived neurotrophic factor (BDNF) on neurite growth from adult sensory neurons in compartmented cultures. J Neurobiol 1997;33:395 -410.
  • [60]Loeb JA, Hmadcha A, Fischbach GD, Land SJ, Zakarian VL. Neuregulin expression at neuromuscular synapses is modulated by synaptic activity and neurotrophic factors. J Neurosci 2002 ;22:2206 - 2214.
  • [61]Belluardo N, Westerblad H, Mudo G, Casabona A, Bruton J, Caniglia G, Pastoris O, Grassi F, Ibanez CF. Neuromuscular junction disassembly and muscle fatigue in mice lacking neurotrophin-4. Mol Cell Neurosci 2001; 18:56 -67.
  • [62]Wells DG, McKechnie BA, Kelkar S, Fallon JR. Neurotrophins regulate agrin-induced postsynaptic differentiation. Proc Natl Acad Sci USA 1999;96:1112- 1117.
  • [63]Henderson CE, Phillips HS, Pollack RA, Davies AM,Lemeulle C, Armanini M, Simpson LC, Moffet B,Vandlen RA, Koliatsos VE, Rosenthal A. GDNF: A potent survival factor for motoneurons present in peripheral nerve and muscle. Science 1994 ;266:1062 - 1064.
  • [64]Nguyen QT, Prasadanian AS, Snider WD, Lichtman JW.Hyperinnervation of neuromuscular junctions caused by GDNF overexpression in muscle. Science 1998 ;279: 1725- 1729.
  • [65]Wehrwein EA, Roskelley EM, Spitsbergen JM. GDNF is regulated in an activity-dependent manner in rat skeletal muscle. Muscle Nerve 2002 ;26:206 - 211.
  • [66]Neff NT, Prevette D, Houenou LJ, Lewis ME, Glicksman MA, Yin QW, Oppenheim RW. Insulin-like growth factors: putative muscle-derived trophic agents that promote motoneuron survival. J Neurobiology 1993; 24: 1578 -1588.
  • [67]Hughes RA, Sendtner M, Goldfarb M, Lindholm D,Thoenen H. Evidence that fibroblast growth factor 5 is a major muscle-derived survival factor for cultured spinal motoneurons. Neuron 1993; 10:369 - 377.
WanfangData CO.,Ltd All Rights Reserved
About WanfangData | Contact US
Healthcare Department, Fuxing Road NO.15, Haidian District Beijing, 100038 P.R.China
Tel:+86-010-58882616 Fax:+86-010-58882615