Adult neural stem/progenitor cells in neurodegenerative repair

( views:66, downloads:0 )
Author:
()
()
Journal Title:
ACTA PHYSIOLOGICA SINICA
Issue:
Volume 55, Issue 03, 2003
DOI:
Key Word:
stem cells;striatum;nigra;neurogenesis;cytogenesis;dopamine;Parkinson′s disease

Abstract: Although the mammalian brain has long been thought to be entirely postmitotic, the recent discovery has confirmed an existence of neural stem or progenitor cells in various regions of the adult mammalian brain. Like embryonic stem cells, adult neural progenitor cells possess the capacity of self-renewal and differentiation potential for neurogenesis or gliogenesis. In addition to the subventricular zone and hippocampus where active cell division naturally occurs, adult neural progenitors with neurogenic potential exist in the striatum and the vicinity of dopaminergic neurons in the substantia nigra. Normally, progenitors in those regions proliferate at a low level, and most proliferated cells remain uncommitted. In response to the selective lesion of nigrostriatal dopaminergic pathway by the neurotoxins, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6-hydroxydopamine, progenitors in the injured areas markedly increase their proliferation rate. Depending upon the magnitude and kinetics of the lesion, neurogenesis and gliogenesis were induced in the lesion sites at varying extents. A large number of growth and neurotrophic factors influence proliferation and/or differentiation of progenitor cells under normal and lesioned conditions. Some factors (epidermal and basic fibroblast growth factors and brain-derived neurotrophic factor) are facilitatory, while others (usually bone morphogenetic proteins) are inhibitory, for controlling division and fate of neuronal or glial progenitors. Expression of endogenous factors and their respective receptors in existing and newborn cells are also subject to be altered by the lesion. These genomic responses are considered to be important elements for the formation of a local molecular niche for a given phenotypic cell regeneration. Taken together, adult neural progenitor cells in the nigrostriatal dopaminergic system have the ability to respond to the lesion to repopulate missing cells. The regenerative neuro- or gliogenesis in situ can, at least in part, endogenously compensate injured neural elements, and achieve a self-repair of neurodegenerative disorders such as Parkinson′s disease.

  • [1]Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell 1997;88:287-298.
  • [2]Potten CS. ed. Stem Cells, Academic Press, London, 1997.
  • [3]Watt FM, Hogan BM. Out of Eden: stem cells and their niches. Science 2000;287:1427-1430.
  • [4]Gage FH. Mammalian neural stem cells. Science 2000;287:1433-1438.
  • [5]Temple S. CNS development: The obscure origins of adult stem cells. Curr Biol 1999;9:R397-R399.
  • [6]Temple S, Alvarez-Buylla A. Stem cells in the adult mammalian central nervous system. Curr Opin Neurobiol 1999;9:135-141.
  • [7]Gage FH, Ray J, Fisher LJ. Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci 1995;18:159-192.
  • [8]Gage FH. Stem cells of the central nervous system. Curr Opin Neurobiol 1998;8:671-676.
  • [9]Kuhn HG, Svendsen CN. Origins, functions, and potential of adult neural stem cells. BioEssays 1999;21:625-630.
  • [10]McKay R. Stem cells in the central nervous system. Science 1997;276:66-71.
  • [11]Shihabuddin LS, Palmer TD, Gage FH. The search for neural progenitor cells: prospects for the therapy of neurodegenerative disease. Mol Med Today 1999;5:474-480.
  • [12]Smart I. The subependymal layer of the mouse brain and its cell production as shown by radioautography after thymidine-H3 injection. J Comp Neurol 1961;116:325-338.
  • [13]Cameron HA, Gould E. Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 1994;61:203-209.
  • [14]Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J. Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 1998;36:249-266.
  • [15]Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E. Hippocampal neurogenesis in adult old world primates. Proc Natl Acad Sci USA 1999;96:5263-5267.
  • [16]Kornack DR, Rakic P. Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci USA 1999;96:5768-5777.
  • [17]Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992;255:1707.
  • [18]Weiss S, Christine D, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 1996;16:7599-7609.
  • [19]Horner PJ, Power AE, Kempermann G, Kuhn HG, Palmer TD, Winkler T, Thal LJ, Gage FH. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 2000;20:2218-2228.
  • [20]Gould E, Reeves AJ, Graziano MSA, Gross CG. Neurogenesis in the neocortex of adult primates. Science 1999;286:548.
  • [21]Tropepe V, Coles BLK, Chiasson BJ, Horsford DJ, Elia AJ, Mclnnes RR, van der Kooy D. Retinal stem cells in the adult mammalian eye. Science 2000;287:2032-2036.
  • [22]Mao L, Wang JQ. Gliogenesis in the striatum of the adult rat: alteration in neural progenitor population after psychostimulant exposure. Dev Brain Res 2000;130:41-51.
  • [23]Kay JN, Blum M. Differential response of ventral midbrain and striatal progenitor cells to lesions of the nigrostriatal dopaminergic projection. Dev Neurosci 2000;22:56-67.
  • [24]Mao L, Lau YS, Petroske E, Wang JQ. Profound astrogenesis in the striatum of adult mice following nigrostriatal dopaminergic lesion by repeated MPTP administration. Dev Brain Res 2001;131:57-65.
  • [25]Lie DC, Dziewczapolski G, Willhoite AR, Kaspar BK, Shults CW, Gage FH. The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 2000;22:6639-6649.
  • [26]Chiasson BJ, Tropepe V, Morshead CM, van der Kooy D. Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J Neurosci 1999;19:4462-4471.
  • [27]Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999;97:703-716.
  • [28]Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Rrisen J. Identification of a neural stem cell in the adult mammalian central nervous sytem. Cell 1999:96:25-34.
  • [29]Martens DJ, Tropepe V, van der Kooy D. Separate proliferation kinetics of fibroblast growth factor-responsive and epidermal growth factor-responsive neural stem cells within the embryonic forebrain germinal zone. J Neurosci 2000;20:1085-1095.
  • [30]Kempermann G, Kuhn HG, Gage FH. Genetic influence on neurogenesis in the dentate gyrus of adult mice. Prod Natl Acad Sci USA 1997;94:10409-10414.
  • [31]Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 2001;435:406-417.
  • [32]Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965;124:319-335.
  • [33]Altman J, Das GD. Postnatal neurogenesis in the guinea pig. Nature 1967;214:1098-1101.
  • [34]Morshead CM, van der Kooy D. Postmitotic death is the fate of constitutively proliferating cells in the subependymal layer of the adult mouse brain. J Neurosci 1992;12:249-256.
  • [35]Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, Weiss S, van der Kooy D. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 1994;13:1071-1082.
  • [36]Morshead CM, Craig CG, van der Kooy D. In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain. Development 1998;125:2251-2261.
  • [37]Craig CG, Tropepe V, Morshead CM, Reynolds BA, Weiss S, van der Kooy D. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci 1996;16:2649-2658.
  • [38]Price J, Thurlow L. Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development 1988;104:473-482.
  • [39]Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science 1994;264:1145-1148.
  • [40]Luskin MD. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 1993;11:173-189.
  • [41]Levision SW, Chuang C, Abramson BJ, Goldman JE. The migrational patterns and developmental fates of glial precursons in the rat subventricular zone are temporally regulated. Development 1993;119:611-622.
  • [42]Cameron HA, Woolley CS, McEwen BS, Gould E. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 1993;56:337-344.
  • [43]Mullen RJ, Buck CR, Smith A. NeuN, a neuronal specific nuclear protein in vertebrates. Development 1992;116:201-211.
  • [44]Markakis E, Gage FH. Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol 1999;406:449-460.
  • [45]Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 1997;94:4080-4085.
  • [46]Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000;290:1779-1782.
  • [47]Mezey E, Key S, Vogelsang G, Szalayova I, Lange GD, Crain B. Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci USA 2003;100:1364-1369.
  • [48]Dawirs PR, Hildebrandt K, Teuchert-Noodt G. Adult treatment with haloperidol increases dentate granule cell proliferation in the gerbil hippocampus. J Neural Transm 1998;105:317-327.
  • [49]Ridet JL, Malhotra SK, Privat A, Gage HH. Reactive astrocytes: Cellular and molecular cues to biological function. Trends Neurosci 1997;20:570-577.
  • [50]Petroske E, Meredith GE, Callen S, Totterdell S, Lau, YS. Mouse model of parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 2001;106:141-153.
  • [51]Dubach M,Schmidt R,Kunkel D, Bowden DM, Martin R, German DC. Primate neostriatal neurons containing tyrosine hydroxylase: immunohistochemical evidence. Neurosci Lett 1987;75:205-210.
  • [52]Tashiro Y, Sugimoto T, Hattori Y, Uemura I, Nagatsu H, Kikuchi H, Mizuno N. Tyrosine hydroxylase-like immunoreactive neurons in the striatum of the rat. Neurosci Lett 1989;97:6-10.
  • [53]Betarbet R, Turner R, Chockkan V, DeLong MR, Allers KA, Walters J, Levey AI, Greenamyre JT. Dopaminergic neurons intrinsic to the primate striatum. J Neurosci 1997;17:6761-6768.
  • [54]Meredith GE, Kellaghan FP, Tan Y, Zahm DS, Totterdell S. Immunocytochemical characterization of catecholaminergic neurons in the rat striatum following dopamine-depleting lesions. Eur J Neurosci 1999;11:3585-3596.
  • [55]Du X, Iacovitti L. Synergy between growth factors and transmitters required for catecholamine differentiation in brain neurons. J Neurosci 1995;15:5420-5427.
  • [56]Du X, Stull ND, Iacovitti L. Brain-derived neurotropic factor works coordinately with partner molecular to initiate tyrosine hydroxylase expression in striatal neurons. Brain Res 1995;680:229-233.
  • [57]Carvey PM, Ptak LR, Nath ST, Sierens DK, Mufsen EJ, Goetz CG, Klawans HL. Striatal extracts from patients with Parkinson′s disease promote dopamine neurons growth in mesencephalic cultures. Exp Neurol 1993;120:149-152.
  • [58]Shen Y, Yu Y, Tang Z, Guo H, Yu ESX, Zhou J. Identification and comparative analysis of differentially expressed proteins in rat striatum following 6-OHDA lesions of nigrostriatal pathway: upregulation of amyloid precursor like-protein 2 expression. Eur J Neurosci 2002;16:896-906.
  • [59]Calzà L, Giardino L, Pozza M, Bettelli C, Micera A, Aloe L. Proliferation and phenotype regulation in the subventricular zone during experimental allergic encephalomyelitis: in vivo evidence of a role for nerve growth factor. Proc Natl Acad Sci USA 1998;95:3209-3214.
  • [60]Ciccolini F,Svendsen CN.Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J Neurosci 1998;18:7869-7880.
  • [61]Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 1997;17:5820-5829.
  • [62]Palmer TD, Markakis EA, Willhoite AR, Safar F, Gage FH. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci 1999;19:8487-8497.
  • [63]Gritti A, Frolichsthal-Schoeller P, Galli R, Parati EA, Cova L, Pagano SF, Bjornson CR, Vescovi AL. Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J Neurosci 1999;19:3287-3297.
  • [64]Wagner JP, Black IB, DiCicco-Bloom E. Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J Neurosci 1999;19:6006-6016.
  • [65]Tao Y, Black IB, DiCicco-Bloom E. Neurogenesis in neonatal rat brain is regulated by peripheral injection of basic fibroblast growth factor (bFGF). J Comp Neurol 1996;376:653-663.
  • [66]Villares J, Faucheux B, Herrero MT, Obeso JA, Duyckaerts C, Hauw JJ, Agid Y, Hirsch EC. [125I]EGF binding in basal ganglia of patients with Parkinson′s disease and progressive supranuclear palsy and in MPTP-treated monkeys. Exp Neurol 1997;154:146-156.
  • [67]Leonard S, Luthman D, Logel J, Luthman J, Antle C, Freedman R, Hoffer B. Acidic and basic fibroblast growth factor mRNAs are increased in striatum following MPTP-induced dopamine neurofiber lesion: assay by quantitative PCR. Mol Brain Res 1993;18, 275-284.
  • [68]Rufer M, Wirth SB, Hofer A, Dermietzel R, Pastor A, Kettenmann H, Unsicker K. Regulation of connexin-43, GFAP, and FGF-2 is not accompanied by changes in astroglial coupling in MPTP-lesioned, FGF-2-treated parkinsonian mice. J Neurosci Res 1996;46:606-617.
  • [69]Chadi G, Cao Y, Pettersson RF, Fuxe K. Temporal and spatial increase of astroglial basic fibroblast growth factor synthesis after 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine neurons. Neuroscience 1994;61:891-910.
  • [70]Glass DJ, Yancopoulos GD. The neurotrophins and their receptors. Trends Cell Biol 1993;3:262-268.
  • [71]Hyman C, Hoger M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM. BDNF is a nuerotrophic factor for dopaminergic neurons of the substantia nigra. Nature 1991;350:230-233.
  • [72]Knusel B, Winslow JW, Rosenthal A, Burton LE, Seid DP, Nikolics K, Hefti F. Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin-3. Proc Natl Acad Sci USA 1991;88:961-965.
  • [73]Beck KD, Knusel B, Hefti F. The nature of the tropic action of brain-derived neurotrophic factor, des(1-3)-insulin-like growth factor-1, and basic fibroblast growth factor on mesencephalic dopaminergic neurons developing in culture. Neuroscience 1993;52:855-866.
  • [74]Spina MB, Squinto SP, Miller J, Lindsay RM, Hyman C. Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenyl-pyridinium ion toxicity: Involvement of the glutathione system. J Neurochem 1992;59:99-106.
  • [75]Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci 2001;21:6718-6731.
  • [76]Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 2001;21:6706-6717.
  • [77]Frim DM, Uhler TA, Galpera WR, Beal MF, Breakefield XO, Isacson O. Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc Natl Acad Sci USA 1994;91:5104-5108.
  • [78]Hung HC, Lee EH. The mesolimbic dopaminergic pathway is more resistant than the nigrostriatal dopaminergic pathway to MPTP and MPP+ toxicity: role of BDNF gene expression. Mol Brain Res 1996;41:14-26.
  • [79]Levivier M, Przedborski S, Bencsics C, Kang UJ. Intra-striatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson′s disease. J Neurosci 1995;15:7810-7820.
  • [80]Pearce RK, Costa S, Jenner P, Marsden CD. Chronic supranigral infusion of BDNF in normal and MPTP-treated common marmosets. J Neural Transm 1999;106:663-683.
  • [81]Aliaga E, Carcamo C, Abarca J, Tapia-Arancibia L, Bustos G. Transient increase of brain derived neurotrophic factor mRNA expression in substantia nigra reticulata after partial lesion of the nigrostriatal dopaminergic pathway. Mol Brain Res 2000;79:150-155.
  • [82]Numan S, Seroog KB. Increased expression of trkB mRNA in rat caudate-putamen following 6-OHDA lesions of the nigrostriatal pathway. Eur J Neurosci 1997;9:489-495.
  • [83]Venero JL, Viuete ML, Revuelta M, Vargas C, Cano J, Machado A. Upregulation of BDNF mRNA and trkB mRNA in the nigrostriatal system and in the lesion site following unilateral transection of the medial forebrain bundle. Exp Neurol 2000;161:38-48.
  • [84]Kingsley DM. The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 1994;8:133-146.
  • [85]Hogan BLM. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 1996;10:1580-1584.
  • [86]Mehler MF, Mabie PC, Zhang D, Kessler JA. Bone morphogenetic proteins in the nervous system. Trends Neurosci 1997;20:309-315.
  • [87]Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, Kessler JA. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 1996;17:595-606.
  • [88]Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 2002;28:713-726.
  • [89]Furuta Y, Piston DW, Hogan BLM. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 1997;124:2203-2212.
  • [90]Zhang D, Mehler MF, Song Q, Kessler JA. Development of bone morphogenetic protein receptors in the nervous system and possible roles in regulating trkC expression. J Neurosci 1998;18:3314-3326.
  • [91]Cho KW, Blitz IL. BMPs, Smads and metalloproteases: extracellular and intracellular modes of negative regulation. Curr Opin Genet Dev 1998;8:443-449.
  • [92]Akerud P, Alberch J, Eketjall S, Wagner J, Arenas E. Differential effects of glial cell line-derived neurotrophic factor and neurturin on developing and adult substantia nigra dopaminergic neurons. J Neurochem 1999;73:70-78.
  • [93]Hagg T. Neurotrophins prevent death and differentially affect tyrosine hydroxylase of adult rat nigrostriatal neurons in vivo. Exp Neurol 1998;149:183-192.
  • [94]Mabie PC, Mehler MF, Kessler JA. Multiple roles of bone morphogenetic protein signaling in the regulation of cortical cell number and phenotype. J Neurosci 1999;19:7077-7088.
  • [95]Alonso G. Proliferation of progenitor cells in the adult rat brain correlates with the presence of vimentin-expressing astrocytes. Glia 2001;34:253-266.
  • [96]Gould E, Cameron HA, Daniels DC, Woolley CS, McEwen BS. Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci 1992;12:3642-3650.
  • [97]Tanapat P, Hastings NB, Reeves AJ, Gould E. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J Neurosci 1999;19:5792-5801.
  • [98]Cameron HA, McEwen BS, Gould E. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 1995;15:4687-4692.
  • [99]Gould E, Cameron HA, McEwen BS. Blockade of NMDA receptors increases cell death and birth in the developing rat dentate gyrus. J Comp Neurol 1994;340:551-565.
  • [100]Gould E, Tanapat P. Lesion-induced proliferation of neuronal progenitors in the dentate gyrus of the adult rat. Neuroscience 1997;80:427-436.
  • [101]Nacher J, Rosell DR, Alonso-Llosa G, McEwen BS. NMDA receptor antagonist treatment induces a long-lasting increase in the number of proliferating cells, PSA-NCAM-immunoreactive granule neurons and radial glia in the adult rat dentate gyrus. Eur J Neurosci 2001;13:512-520.
  • [102]Gould E. Serotonin and hippocampal neurogenesis. Neuropsychopharmacology 1999;21:46S-51S.
  • [103]Alvarado AS, Newmark PA. The use of planarians to dissect the molecular basis of metazoan regeneration. Wound Repair, Regen 1998;6:413-420.
  • [104]Lois C, Garcia-Verdugo JM, Alvarez-Buylla A. Chain migration of neuronal precursors. Science 1996;271:978-981.
  • [105]Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature 2001;410:372-376.
  • [106]Stanfield BB, Trice JE. Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp Brain Res 1988;72:399-407.
  • [107]Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 1997;17:3727-3738.
  • [108]Snyder EY, Yoon C, Flax JD, Macklis JD. Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc Natl Acad Sci USA 1997;94:11663-11668.
WanfangData CO.,Ltd All Rights Reserved
About WanfangData | Contact US
Healthcare Department, Fuxing Road NO.15, Haidian District Beijing, 100038 P.R.China
Tel:+86-010-58882616 Fax:+86-010-58882615 Email:yiyao@wanfangdata.com.cn